Question	Scheme	Marks	AOs	
12	$\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} \mathrm{d}\theta$			
	Attempts this question by applying the substitution $u = 1 + \cos \theta$			
	and progresses as far as achieving $\int \dots \frac{(u-1)}{u} \dots$	M1	3.1a	
	$u = 1 + \cos\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$	M1	1.1b	
	$\left\{\int \frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1+\cos \theta} \mathrm{d}\theta = \int \frac{-2(u-1)}{u} \mathrm{d}u$	A1	2.1	
	$-2\int \left(1-\frac{1}{u}\right) du = -2(u-\ln u)$	M1	1.1b	
		M1	1.1b	
	$\left\{\int_{0}^{\frac{\pi}{2}}\frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} = -2\left[u - \ln u\right]_{2}^{1} = -2((1-\ln 1)-(2-\ln 2))$	M1	1.1b	
	$= -2(-1 + \ln 2) = 2 - 2\ln 2 *$	A1*	2.1	
		(7)		
12	Attempts this question by applying the substitution $u = \cos \theta$			
Alt 1	and progresses as far as achieving $\int \dots \frac{u}{u+1} \dots$	M1	3.1a	
	$u = \cos\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = -\sin\theta$ and $\sin 2\theta = 2\sin\theta\cos\theta$	M1	1.1b	
	$\left\{\int \frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1+\cos \theta} \mathrm{d}\theta = \int \frac{-2u}{u+1} \mathrm{d}u$	A1	2.1	
	$\left\{=-2\int \frac{(u+1)-1}{u+1}\mathrm{d} u = -2\int 1-\frac{1}{u+1}\mathrm{d} u\right\} = -2(u-\ln(u+1))$	M1	1.1b	
		M1	1.1b	
	$\left\{\int_0^{\frac{\pi}{2}}\frac{\sin 2\theta}{1+\cos \theta} \mathrm{d}\theta = \right\} = -2\left[u - \ln(u+1)\right]_1^0 = -2((0-\ln 1)-(1-\ln 2))$	M1	1.1b	
	$= -2(-1 + \ln 2) = 2 - 2\ln 2 *$	A1*	2.1	
		(7)		
	(7 marks)			

Question 12 Notes:		
M1:	See scheme	
M1:	Attempts to differentiate $u = 1 + \cos\theta$ to give $\frac{du}{d\theta} =$ and applies $\sin 2\theta = 2\sin\theta\cos\theta$	
A1:	Applies $u = 1 + \cos \theta$ to show that the integral becomes $\int \frac{-2(u-1)}{u} du$	
M1:	Achieves an expression in <i>u</i> that can be directly integrated (e.g. dividing each term by <i>u</i> or applying partial fractions) and integrates to give an expression in <i>u</i> of the form $\pm \lambda u \pm \mu \ln u$, $\lambda, \mu \neq 0$	
M1:	For integration in u of the form $\pm 2(u - \ln u)$	
M1:	Applies <i>u</i> -limits of 1 and 2 to an expression of the form $\pm \lambda u \pm \mu \ln u$, $\lambda, \mu \neq 0$ and subtracts either way round	
A1*:	Applies <i>u</i> -limits the right way round, i.e.	
	• $\int_{2}^{1} \frac{-2(u-1)}{u} du = -2 \int_{2}^{1} \left(1 - \frac{1}{u}\right) du = -2 \left[u - \ln u\right]_{2}^{1} = -2((1 - \ln 1) - (2 - \ln 2))$	
	• $\int_{2}^{1} \frac{-2(u-1)}{u} du = 2 \int_{1}^{2} \left(1 - \frac{1}{u}\right) du = 2 \left[u - \ln u\right]_{1}^{2} = 2((2 - \ln 2) - (1 - \ln 1))$	
	and correctly proves $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = 2 - 2\ln 2$, with no errors seen	
Alt 1		
M1:	See scheme	
M1:	Attempts to differentiate $u = \cos \theta$ to give $\frac{du}{d\theta} = \dots$ and applies $\sin 2\theta = 2\sin \theta \cos \theta$	
A1:	Applies $u = \cos \theta$ to show that the integral becomes $\int \frac{-2u}{u+1} du$	
M1:	Achieves an expression in <i>u</i> that can be directly integrated (e.g. by applying partial fractions or a substitution $v = u+1$) and integrates to give an expression in <i>u</i> of the form	
	$\pm \lambda u \pm \mu \ln(u+1), \lambda, \mu \neq 0$ or $\pm \lambda v \pm \mu \ln v, \lambda, \mu \neq 0$, where $v = u+1$	
M1:	For integration in u in the form $\pm 2(u - \ln(u+1))$	
M1:	Either	
	• Applies <i>u</i> -limits of 0 and 1 to an expression of the form $\pm \lambda u \pm \mu \ln(u+1)$, $\lambda, \mu \neq 0$ and subtracts either way round	
	• Applies <i>v</i> -limits of 1 and 2 to an expression of the form $\pm \lambda v \pm \mu \ln v$, $\lambda, \mu \neq 0$, where $v = u+1$ and subtracts either way round	
A1*:	Applies <i>u</i> -limits the right way round, (o.e. in \boldsymbol{v}) i.e.	
	• $\int_{1}^{0} \frac{-2u}{u+1} \mathrm{d}u = -2 \int_{1}^{0} \left(1 - \frac{1}{u+1}\right) \mathrm{d}u = -2 \left[u - \ln(u+1)\right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$	
	• $\int_{1}^{0} \frac{-2u}{u+1} du = 2 \int_{0}^{1} \left(1 - \frac{1}{u+1} \right) du = 2 \left[u - \ln(u+1) \right]_{0}^{1} = 2((1 - \ln 2) - (0 - \ln 1))$	
	and correctly proves $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1+\cos \theta} d\theta = 2-2\ln 2$, with no errors seen	