Question	Scheme	Marks	AOs
13 (a)	R=2.5	B1	1.1b
	$\tan \alpha = \frac{1.5}{2}$ o.e.	M1	1.1b
	$\alpha = 0.6435$, so $2.5\sin(\theta - 0.6435)$	A1	1.1b
		(3)	
(b)	e.g. $D = 6 + 2\sin\left(\frac{4\pi(0)}{25}\right) = 1.5\cos\left(\frac{4\pi(0)}{25}\right) = 4.5$ m or $D = 6 + 2.5\sin\left(\frac{4\pi(0)}{25} = 0.6435\right) = 4.5$ m	B1	3.4
		(1)	
(c)	$D_{\text{max}} = 6 + 2.5 = 8.5 \text{m}$	B1ft	3.4
		(1)	
(d)	Sets $\frac{4\pi t}{25}$ – "0.6435" = $\frac{5\pi}{2}$ or $\frac{\pi}{2}$	Ml	1.1b
	Afternoon solution $\Rightarrow \frac{4\pi t}{25}$ "0.6435" $-\frac{5\pi}{2} \Rightarrow t -\frac{25}{4\pi} \left(\frac{5\pi}{2} + \text{"0.6435"}\right)$	M1	3.1b
	$\Rightarrow t = 16.9052 \Rightarrow \text{Time} = 16:54 \text{ or } 4:54 \text{ pm}$	A1	3.2a
		(3)	
(e)(i)	 An attempt to find the depth of water at 00:00 on 19th October 2017 for at least one of either Tom's model or Jolene's model. 	M1	3.4
	 At 00:00 on 19th October 2017, Tom: D = 3.72 m and Jolene: II = 4.5 m and e.g. As 4.5 ≠ 3.72 then Jolene's model is not true Jolene's model is not continuous at 00:00 on 19th October 2017 Jolene's model does not continue on from where Tom's model has ended 	Al	3.5a
(ii)	To make the model continuous, e.g. • $H = 5.22 + 2\sin\left(\frac{4\pi x}{25}\right) - 1.5\cos\left(\frac{4\pi x}{25}\right)$, $0 \le x < 24$ • $H = 6 + 2\sin\left(\frac{4\pi(x + 24)}{25}\right) - 1.5\cos\left(\frac{4\pi(x + 24)}{25}\right)$, $0 \le x < 24$	Bl	3.3
		(3)	
		(11 r	narks)

Questio	Scheme	Marks	AOs
13 (d) Alt 1	Sets $\frac{4\pi t}{25}$ "0.6435" $\frac{\pi}{2}$	M1	1.1b
	Period $= 2\pi : \left(\frac{4\pi}{25}\right) = 12.5$ Afternoon solution $\Rightarrow t = 12.5 + \frac{25}{4\pi} \left(\frac{\pi}{2} + \text{``0.6435''}\right)$	M1	3.1b
	$\Rightarrow t = 16.9052 \Rightarrow \text{Time} = 16:54 \text{ or } 4:54 \text{ pm}$	A1	3.2a
		(3)	
Question	13 Notes:		
M1: F A1: (b) B1: (c) B1ft: (d)	R = 2.5 Condone $R = \sqrt{6.25}$ or either $\tan \alpha = \frac{1.5}{2}$ or $\tan \alpha = -\frac{1.5}{2}$ or $\tan \alpha = \frac{2}{1.5}$ or $\tan \alpha = -\frac{2}{1.5}$ $\alpha = \text{awrt } 0.6435$ Uses Tom's model to find $D = 4.5$ (m) at 00:00 on 18th October 2017 where 8.5 or follow through "6 + their R" (by using their R found in part (a))		
5	ealises that $D = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right) = 6 + 2.5\sin\left(\frac{4\pi t}{25}\right) - 2.643$	35") and	
M1: U A1: (d)	dealises that $D = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right) = 6 + "2.5" \sin\left(\frac{4\pi t}{25} - "0.6435"\right)$ or maximum depth occurs when $\sin\left(\frac{4\pi t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\pi t}{25} - "0.6435" = \frac{5\pi t}{25}$ Uses the model to deduce that a p.m. solution occurs when $\frac{4\pi t}{25} - "0.6435" = \frac{5\pi t}{25}$ his equation to make $t = \dots$ indicates that maximum depth occurs in the afternoon at 16:54 or 4:54 pm	$\frac{\pi}{2} \text{ or } \frac{5\pi}{2}$	ıges
M1: U A1: (d) Alt 1	to maximum depth occurs when $\sin\left(\frac{4\pi t}{25} - \text{"0.6435"}\right) = 1 \Rightarrow \frac{4\pi t}{25} = \text{"0.6435"} = \frac{5\pi t}{25}$ Uses the model to deduce that a p.m. solution occurs when $\frac{4\pi t}{25} - \text{"0.6435"} = \frac{5\pi t}{25}$ has equation to make $t = \dots$	$\frac{\pi}{2} \text{ or } \frac{5\pi}{2}$ $\frac{\pi}{2} \text{ and rearran}$	nges
M1: U tl A1: (d) Alt 1 M1: M	o maximum depth occurs when $\sin\left(\frac{4\pi t}{25} - \text{"0.6435"}\right) = 1 \Rightarrow \frac{4\pi t}{25} = \text{"0.6435"} = \frac{5\pi t}{25}$ Uses the model to deduce that a p.m. solution occurs when $\frac{4\pi t}{25} - \text{"0.6435"} = \frac{5\pi t}{25}$ has equation to make $t =$ finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm	$\frac{\pi}{2}$ or $\frac{5\pi}{2}$ $\frac{\pi}{2}$ and rearrance $\frac{\pi}{2}$	nges

Question 13 Notes Continued:		
(e)(i)		
M1:	See scheme	
A1:	See scheme	
	Note: Allow Special Case M1 for a candidate who just states that Jolene's model is not continuous at 00:00 on 19th October 2017 o.e.	
(e)(ii)		
B1:	Uses the information to set up a new model for <i>H</i> . (See scheme)	