Questi	on Scheme	Marks	AOs	
14	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$			
	$x + y = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$	M1 M1	3.1a 1.1b	
	$x + y = 2\sqrt{3}\cos t$	A1	1.1b	
	$\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$	M1	3.1a	
	$\frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$			
	$(x+y)^2 + 3y^2 = 12$	A1	2.1	
		(5)		
14 Alt 1	$(x+y)^2 = \left(4\cos\left(t+\frac{\pi}{6}\right)+2\sin t\right)^2$			
	$= \left(4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t\right)^2$	M1	3.1a	
		M1	1.1b	
	$=\left(2\sqrt{3}\cos t\right)^2$ or $12\cos^2 t$	A1	1.1b	
	So, $(x + y)^2 = 12(1 - \sin^2 t) = 12 - 12\sin^2 t = 12 - 12\left(\frac{y}{2}\right)^2$	M1	3.1a	
	$(x+y)^2 + 3y^2 = 12$	A1	2.1	
		(5)		
		(5 r	narks)	
	on 14 Notes:			
M1:	Looks ahead to the final result and uses the compound angle formula in a full attempt to write do an expression for $x + y$ which is in terms of t only.			
M1:	Applies the compound angle formula on their term in x . E.g.			
	$\cos\left(t+\frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$			
A1:	Uses correct algebra to find $x + y = 2\sqrt{3}\cos t$			
M1:	Complete strategy of applying $\cos^2 t + \sin^2 t = 1$ on a rearranged $x + y = "2\sqrt{3}\cos t$ ", $y = 2\sin^2 t$			

to achieve an equation in x and y only

A1: Correctly proves $(x + y)^2 + ay^2 = b$ with both a = 3, b = 12, and no errors seen

Question 14 Notes Continued:		
Alt 1		
M1:	Apply in the same way as in the main scheme	
M1:	Apply in the same way as in the main scheme	
A1:	Uses correct algebra to find $(x + y)^2 = (2\sqrt{3}\cos t)^2$ or $(x + y)^2 = 12\cos^2 t$	
M1:	Complete strategy of applying $\cos^2 t + \sin^2 t = 1$ on $(x + y)^2 = ("2\sqrt{3}\cos t")^2$ to achieve an	
	equation in x and y only	
A1:	Correctly proves $(x + y)^2 + ay^2 = b$ with both $a = 3, b = 12$, and no errors seen	