



Figure 1

Figure 1 shows a sketch of the curve with equation $y = \frac{x}{1 + \sqrt{x}}$, $x \ge 0$.

The finite region R, shown shaded in Figure 1, is bounded by the curve, the line with equation x = 1, the x-axis and the line with equation x = 3.

The table below shows corresponding values of x and y for $y = \frac{x}{1 + \sqrt{x}}$.

х	1	1.5	2	2.5	3
у	0.5	0.6742	0.8284	0.9686	1.0981

- (a) Use the trapezium rule, with all the values of y in the table, to find an estimate for the area of R, giving your answer to 3 decimal places.
- (b) Explain how the trapezium rule can be used to give a better approximation for the area of R. (1)
- (c) Giving your answer to 3 decimal places in each case, use your answer to part (a) to deduce an estimate for

(i)
$$\int_{1}^{3} \frac{5x}{1+\sqrt{x}} dx$$
, (ii) $\int_{1}^{3} 6 + \frac{x}{1+\sqrt{x}} dx$.

(2)

(3)

(Total for Question 1 is 6 marks)