Question	Scheme	Marks	AOs
1	Attempts either $\sin 3\theta \approx 3\theta$ or $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2}$ in $\frac{1 - \cos 4\theta}{2\theta \sin 3\theta}$	M1	1.1b
	Attempts both $\sin 3\theta \approx 3\theta$ and $\cos 4\theta \approx 1 - \frac{\left(4\theta\right)^2}{2} \to \frac{1 - \left(1 - \frac{\left(4\theta\right)^2}{2}\right)}{2\theta \times 3\theta}$ and attempts to simplify	M1	2.1
	$=\frac{4}{3}$ oe	A1	1.1b
		(3)	

(3 marks)

M1: Attempts either $\sin 3\theta \approx 3\theta$ or $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2}$ in the given expression.

See below for description of marking of $\cos 4\theta$

M1: Attempts to substitute both $\sin 3\theta \approx 3\theta$ and $\cos 4\theta \approx 1 - \frac{(4\theta)^2}{2}$

$$\rightarrow \frac{1 - \left(1 - \frac{\left(4\theta\right)^2}{2}\right)}{2\theta \times 3\theta}$$
 and attempts to simplify.

Condone missing bracket on the 4θ so $\cos 4\theta \approx 1 - \frac{4\theta^2}{2}$ would score the method

Expect to see it simplified to a single term which could be in terms of $\,\theta$

Look for an answer of k but condone $k\theta$ following a slip

A1: Uses both identities and simplifies to $\frac{4}{3}$ or exact equivalent with no incorrect lines BUT allow recovery on missing bracket for $\cos 4\theta \approx 1 - \frac{4\theta^2}{2}$.

Eg.
$$\frac{1 - \left(1 - \frac{\left(4\theta\right)^2}{2}\right)}{2\theta \times 3\theta} = \frac{8\theta^2}{6\theta} = \frac{4}{3} \text{ is M1 M1 A0}$$

Condone awrt 1.33.

.....

Alt:
$$\frac{1-\cos 4\theta}{2\theta \sin 3\theta} = \frac{1-\left(1-2\sin^2 2\theta\right)}{2\theta \sin 3\theta} = \frac{2\sin^2 2\theta}{2\theta \sin 3\theta} = \frac{2\times\left(2\theta\right)^2}{2\theta\times3\theta} = \frac{4}{3}$$

M1 For an attempt at $\sin 3\theta \approx 3\theta$ or the identity $\cos 4\theta = 1 - 2\sin^2 2\theta$ with $\sin 2\theta \approx 2\theta$ M1 For both of the above and attempts to simplify to a single term.

... 4

A1 $\frac{4}{3}$ oe