Question	Scheme	Marks	AOs
2(a)	$dy = 2 + 12 - \frac{1}{2}$	M1	1.1b
	(i) $\frac{1}{dx} = 2x - 2 - 12x^{-2}$	A1	1.1b
	(ii) $\frac{d^2 y}{dx^2} = 2 + 6x^{-\frac{3}{2}}$	B1ft	1.1b
		(3)	
(b)	Substitutes $x = 4$ into their $\frac{dy}{dx} = 2 \times 4 - 2 - 12 \times 4^{-\frac{1}{2}} = \dots$	M1	1.1b
	Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point" oe	A1	2.1
		(2)	
	Substitutes $x = 4$ into their $\frac{d^2 y}{dx^2} = 2 + 6 \times 4^{-\frac{3}{2}} = (2.75)$	M1	1.1b
	$\frac{d^2 y}{dx^2} = 2.75 > 0$ and states "hence minimum"	A1ft	2.2a
		(2)	
(7 marks			
(d)(d) M1: Differentiates to $\frac{dy}{dx} = Ax + B + Cx^{-\frac{1}{2}}$ A1: $\frac{dy}{dx} = 2x - 2 - 12x^{-\frac{1}{2}}$ (Coefficients may be unsimplified) (a)(ii) B1ft: Achieves a correct $\frac{d^2 y}{dx^2}$ for their $\frac{dy}{dx}$ (Their $\frac{dy}{dx}$ must have a negative or fractional index) (b) M1: Substitutes $x = 4$ into their $\frac{dy}{dx}$ and attempts to evaluate. There must be evidence $\frac{dy}{dx}\Big _{x=4} =$			
Alternatively substitutes $x = 4$ into an equation resulting from $\frac{dy}{dx} = 0$ Eg. $\frac{30}{x} = (x-1)^2$ and equates A1: There must be a reason and a minimal conclusion. Allow \checkmark , QED for a minimal conclusion Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point" oe			
Alt Shows that $x = 4$ is a root of the resulting equation and states "hence there is a stationary point" All aspects of the proof must be correct including a conclusion (c)			
M1: Substitutes $x = 4$ into their $\frac{d^2 y}{dx^2}$ and calculates its value, or implies its sign by a statement such as			
when $x = 4 \Rightarrow \frac{d^2 y}{dx^2} > 0$. This must be seen in (c) and not labelled (b). Alternatively calculates the			
gradient of <i>C</i> either side of $x = 4$ or calculates the value of <i>y</i> either side of $x = 4$. A1ft: For a correct calculation, a valid reason and a correct conclusion. Ignore additional work where			
candidate finds $\frac{d^2 y}{dx^2}$ left and right of $x = 4$. Follow through on an incorrect $\frac{d^2 y}{dx^2}$ but it is dependent upon			
having a negative or fractional index. Ignore any references to the word convex. The nature of the turning point is "minimum".			
Using the gradient look for correct calculations, a valid reason goes from negative to positive, and a correct conclusionminimum.			