Question	Scheme	Marks	AOs
3	States or uses $\frac{1}{2}r^2\theta = 11$	B1	1.1b
	States or uses $2r + r\theta = 4r\theta$	B1	1.1b
	Attempts to solve, full method $r =$	M1	3.1a
	$r = \sqrt{33}$	A1	1.1b
			[4]

(4 marks)

Notes:

B1: States or uses $\frac{1}{2}r^2\theta = 11$ This may be implied with an embedded found value for θ

B1: States or uses $2r + r\theta = 4r\theta$ or equivalent

M1: Full method to find r = ... This involves combining the equations to eliminate θ or find θ The initial equations must be of the same "form" (see **) but condone slips when attempting to solve.

It cannot be scored from impossible values for θ Hence only score if $0 < \theta < 2\pi$ FYI $\theta = \frac{2}{3}$ radians

Allow this to be scored from equations such as $...r^2\theta = 11$ and ones that simplify to $...r = ...r\theta$ **

Allow their
$$2r + r\theta = 4r\theta \Rightarrow r\theta = ...$$
 then substitute this into their $\frac{1}{2}r^2\theta = 11$

Allow their $2r + r\theta = 4r\theta \Rightarrow \theta = ...$ then substitute this into their $\frac{1}{2}r^2\theta = 11$

Allow their $\frac{1}{2}r^2\theta = 11 \Rightarrow \theta = \frac{...}{r^2}$ then substitute into their $2r + r\theta = 4r\theta \Rightarrow r = ...$

A1: $r = \sqrt{33}$ only but isw after a correct answer.

.....

The whole question can be attempted using θ in degrees.

B1: States or uses $\frac{\theta}{360} \times \pi r^2 = 11$

B1: States or uses $2r + \frac{\theta}{360} \times 2\pi r = 4 \times \frac{\theta}{360} \times 2\pi r$