Question	Scheme	Marks	AOs
6 (a)	Deduces that gradient of <i>PA</i> is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point (7,5) $y-5 = -\frac{1}{2}(x-7)$	M1	1.1b
	Completes proof $2y + x = 17 *$	A1*	1.1b
		(3)	
(b)	Solves $2y + x = 17$ and $y = 2x + 1$ simultaneously	M1	2.1
	P = (3,7)	A1	1.1b
	Length $PA = \sqrt{(3-7)^2 + (7-5)^2} = (\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^{2} + (y-5)^{2} = 20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y = 2x + k$ meets <i>C</i> using $\overrightarrow{OA} + \overrightarrow{PA}$	M1	3.1a
	Substitutes their (11,3) in $y = 2x + k$ to find k	M1	2.1
	k = -19	A1	1.1b
		(3)	
			(10 marks)
(c)	Attempts to find where $y = 2x + k$ meets <i>C</i> via simultaneous equations proceeding to a 3TQ in <i>x</i> (or <i>y</i>) FYI $5x^2 + (4k - 34)x + k^2 - 10k + 54 = 0$	M1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	k = -19	A1	1.1b
		(3)	
Notes: (a) M1: Uses the idea of perpendicular gradients to deduce that gradient of <i>PA</i> is $-\frac{1}{2}$. Condone $-\frac{1}{2}x$ if			
followed by correct work. You may well see the perpendicular line set up as $y = -\frac{1}{2}x + c$ which scored this			
mark			

M1: Award for the method of finding the equation of a line with a changed gradient and the point (7,5)

So sight of
$$y-5=\frac{1}{2}(x-7)$$
 would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1*: Completes proof with no errors or omissions 2y + x = 17

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving 2y + x = 17 and y = 2x + 1 simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start 17 - x = 2x + 1 as they have set 2y = y but condone bracketing errors, eg $2 \times 2x + 1 + x = 17$ A1: P = (3,7)

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their P = (3,7) and (7,5). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1:
$$(x-7)^2 + (y-5)^2 = 20$$
. Do not accept $(x-7)^2 + (y-5)^2 = (\sqrt{20})^2$

(c)

M1: Attempts to find where y = 2x + k meets *C*.

Awarded for using $\overrightarrow{OA} + \overrightarrow{PA}$. (11,3) or one correct coordinate of (11,3) is evidence of this award.

M1: For a full method leading to k. Scored for either substituting their (11,3) in y = 2x + k

or, in the alternative, for solving their $(4k-34)^2 - 4 \times 5 \times (k^2 - 10k + 54) = 0 \Longrightarrow k = ...$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots

A1: k = -19 only

Alternative I

M1: For solving y = 2x + k with their $(x-7)^2 + (y-5)^2 = 20$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both *b* and *c* are dependent upon *k*. The terms in x^2 and *x* must be collected together or implied to have been collected by their correct use in " $b^2 - 4ac$ " FYI the correct quadratic is $5x^2 + (4k-34)x + k^2 - 10k + 54 = 0$

M1: For using the discriminant condition $b^2 - 4ac = 0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.

 $(4k-34)^2 - 4 \times 5 \times (k^2 - 10k + 54) = 0 \Longrightarrow k = ...$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots

Award if you see use of correct formula but it would be implied by \pm correct **A1:** k = -19 only

Alternative II

M1: For solving 2y + x = 17 with their $(x-7)^2 + (y-5)^2 = 20$, creating a 3TQ and solving.

M1: For substituting their (11,3) into y = 2x + k and finding k

A1: k = -19 only

Other method are possible using trigonometry.