Question	Scheme	Marks	AOs
6 (a)	Deduces that gradient of $P A$ is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point $(7,5)$ $y-5=-\frac{1}{2}(x-7)$	M1	1.1b
	Completes proof $2 y+x=17$ *	A1*	1.1b
		(3)	
(b)	Solves $2 y+x=17$ and $y=2 x+1$ simultaneously	M1	2.1
	$P=(3,7)$	A1	1.1b
	Length $P A=\sqrt{(3-7)^{2}+(7-5)^{2}}=(\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^{2}+(y-5)^{2}=20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y=2 x+k$ meets C using $\overrightarrow{O A}+\overrightarrow{P A}$	M1	3.1a
	Substitutes their (11,3) in $y=2 x+k$ to find k	M1	2.1
	$k=-19$	A1	1.1b
		(3)	
(10 marks)			
(c)	Attempts to find where $y=2 x+k$ meets C via simultaneous equations proceeding to a 3 TQ in x (or y) FYI $5 x^{2}+(4 k-34) x+k^{2}-10 k+54=0$	M1	3.1a
	Uses $b^{2}-4 a c=0$ oe and proceeds to $k=\ldots$	M1	2.1
	$k=-19$	A1	1.1b
		(3)	
Notes: (a) M1: Uses followed by mark M1: Award So sig If the	idea of perpendicular gradients to deduce that gradient of $P A$ is $-\frac{1}{2}$ orrect work. You may well see the perpendicular line set up as $y=-$ or the method of finding the equation of a line with a changed gradie t of $y-5=\frac{1}{2}(x-7)$ would score this mark rm $y=m x+c$ is used expect the candidates to proceed as far as $c=$	ndone $+c$ whic d the po score th	red th (7,5)

A1*: Completes proof with no errors or omissions $2 y+x=17$
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving $2 y+x=17$ and $y=2 x+1$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start $17-x=2 x+1$ as they have set $2 y=y$ but condone bracketing errors, eg $2 \times 2 x+1+x=17$
A1: $P=(3,7)$
M1: Uses Pythagoras' Theorem to find the radius or radius ${ }^{2}$ using their $P=(3,7)$ and $(7,5)$. There must be an attempt to find the difference between the coordinates in the use of Pythagoras
A1: $(x-7)^{2}+(y-5)^{2}=20$. Do not accept $(x-7)^{2}+(y-5)^{2}=(\sqrt{20})^{2}$
(c)

M1: Attempts to find where $y=2 x+k$ meets C.
Awarded for using $\overrightarrow{O A}+\overrightarrow{P A}$. $(11,3)$ or one correct coordinate of $(11,3)$ is evidence of this award.
M1: For a full method leading to k. Scored for either substituting their $(11,3)$ in $y=2 x+k$ or, in the alternative, for solving their $(4 k-34)^{2}-4 \times 5 \times\left(k^{2}-10 k+54\right)=0 \Rightarrow k=\ldots$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=-19$ only

Alternative I

M1: For solving $y=2 x+k$ with their $(x-7)^{2}+(y-5)^{2}=20$ and creating a quadratic eqn of the form $a x^{2}+b x+c=0$ where both \boldsymbol{b} and \boldsymbol{c} are dependent upon \boldsymbol{k}. The terms in x^{2} and x must be collected together or implied to have been collected by their correct use in " $b^{2}-4 a c$ "
FYI the correct quadratic is $5 x^{2}+(4 k-34) x+k^{2}-10 k+54=0$
M1: For using the discriminant condition $b^{2}-4 a c=0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.
$(4 k-34)^{2}-4 \times 5 \times\left(k^{2}-10 k+54\right)=0 \Rightarrow k=\ldots$ Allow use of a calculator here to find roots.
Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=-19$ only

Alternative II

M1: For solving $2 y+x=17$ with their $(x-7)^{2}+(y-5)^{2}=20$, creating a 3TQ and solving.
M1: For substituting their $(11,3)$ into $y=2 x+k$ and finding k
$\mathrm{A} 1: k=-19$ only
Other method are possible using trigonometry.

