Question	Scheme	Marks	AOs
7 (a)	$\int \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(3x-k)$	M1	1.1a
		A1	1.1b
	$\int_{k}^{3k} \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(9k-k) - \frac{2}{3} \ln(3k-k)$	dM1	1.1b
	$=\frac{2}{3}\ln\left(\frac{8\not k}{2\not k}\right)=\frac{2}{3}\ln 4 \text{ oe}$	A1	2.1
		(4)	
(b)	$\int \frac{2}{(2x-k)^2} dx = -\frac{1}{(2x-k)}$	M1	1.1b
	$\int_{k}^{2k} \frac{2}{(2x-k)^2} dx = -\frac{1}{(4k-k)} + \frac{1}{(2k-k)}$	dM1	1.1b
	$=\frac{2}{3k} \left(\propto \frac{1}{k}\right)$	A1	2.1
		(3)	
			7 marks)

(a)
M1:
$$\int \frac{2}{(3x-k)} dx = A \ln(3x-k)$$
 Condone a missing bracket
A1:
$$\int \frac{2}{(3x-k)} dx = \frac{2}{3} \ln(3x-k)$$

Allow recovery from a missing bracket if in subsequent work $A \ln 9k - k \rightarrow A \ln 8k$ dM1: For substituting k and 3k into their $A \ln(3x-k)$ and subtracting either way around

A1: Uses correct ln work and notation to show that I = $\frac{2}{3} \ln \left(\frac{8}{2}\right)$ or $\frac{2}{3} \ln 4$ oe (ie independent of *k*)

(b)

M1:
$$\int \frac{2}{(2x-k)^2} dx = \frac{C}{(2x-k)}$$

dM1: For substituting *k* and 2*k* into their $\frac{C}{(2x-k)}$ and subtracting

A1: Shows that it is inversely proportional to k Eg proceeds to the answer is of the form $\frac{A}{k}$ with $A = \frac{2}{3}$. There is no need to perform the whole calculation. Accept from $-\frac{1}{(3k)} + \frac{1}{(k)} = \left(-\frac{1}{3} + 1\right) \times \frac{1}{k} \propto \frac{1}{k}$. If the calculation is performed it must be correct.

Do not isw here. They should know when they have an expression that is inversely proportional to *k***.** You may see substitution used but the mark is scored for the same result. See below

 $u = 2x - k \rightarrow \left[\frac{C}{u}\right]$ for M1 with limits 3k and k used for dM1