Question	Scheme	Marks	AOs
9(a)	Either $3y^2 \rightarrow Ay \frac{dy}{dx}$ or $2xy \rightarrow 2x \frac{dy}{dx} + 2y$	M1	2.1
	$2x - 2x\frac{\mathrm{d}y}{\mathrm{d}x} - 2y + 6y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1	1.1b
	$(6y-2x)\frac{\mathrm{d}y}{\mathrm{d}x} = 2y-2x$	M1	2.1
	$\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x} = \frac{y - x}{3y - x} *$	A1*	1.1b
		(4)	
(b)	$\left(\operatorname{At} P \text{ and } Q \frac{\mathrm{d}y}{\mathrm{d}x} \to \infty \Longrightarrow\right) \text{Deduces that } 3y - x = 0$	M1	2.2a
	Solves $y = \frac{1}{3}x$ and $x^2 - 2xy + 3y^2 = 50$ simultaneously	M1	3.1a
	$\Rightarrow x = (\pm)5\sqrt{3} \text{OR} \Rightarrow y = (\pm)\frac{5}{3}\sqrt{3}$	A1	1.1b
	Using $y = \frac{1}{3}x \implies x =$ AND $y =$	dM1	1.1b
	$P = \left(-5\sqrt{3}, -\frac{5}{3}\sqrt{3}\right)$	A1	2.2a
		(5)	
(c)	Explains that you need to solve $y = x$ and $x^2 - 2xy + 3y^2 = 50$ simultaneously and choose the positive solution	B1ft	2.4
		(1)	
		(10 marks
Notes: (a) M1: For sold	ecting the appropriate method of differentiating either $3y^2 \rightarrow Ay \frac{dy}{dx}$	*) *) *) *	$\frac{dy}{dy}$
	ite difficult awarding it for the product rule but condone $-2xy \rightarrow -2x$		<u>u</u> n
see evidence	that they have used the incorrect law $vu'-uv'$	un	
A1: Fully co	prrect derivative $2x - 2x \frac{dy}{dx} - 2y + 6y \frac{dy}{dx} = 0$		
Allow atte	mpts where candidates write $2xdx - 2xdy - 2ydx + 6ydy = 0$		
but watch fo	r students who write $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx}$ This, on its own,	is A0 unless	you are
convinced th	bet this is just their notation Eq. $\frac{dy}{dy} = 2x - 2x \frac{dy}{dy} = 2y + 6y \frac{dy}{dy} = 0$		

convinced that this is just their notation. Eg $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y\frac{dy}{dx} = 0$

M1: For a valid attempt at making $\frac{dy}{dx}$ the subject. with two terms in $\frac{dy}{dx}$ coming from $3y^2$ and 2xyLook for $(\dots \pm \dots) \frac{dy}{dx} = \dots$ It is implied by $\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x}$ This cannot be scored from attempts such as $\frac{dy}{dx} = 2x - 2x\frac{dy}{dx} - 2y + 6y$ which only has one correct term. A1*: $\frac{dy}{dx} = \frac{y-x}{3y-x}$ with no errors or omissions. The previous line $\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x}$ or equivalent must be seen. **(b)** M1: Deduces that 3y - x = 0 oe M1: Attempts to find either the x or y coordinates of P and Q by solving their $y = \frac{1}{3}x$ with $x^2 - 2xy + 3y^2 = 50$ simultaneously. Allow for finding a quadratic equation in x or y and solving to find at least one value for *x* or *y*. This may be awarded when candidates make the numerator = 0 ie using y = xA1: $\Rightarrow x = (\pm)5\sqrt{3}$ OR $\Rightarrow y = (\pm)\frac{5}{3}\sqrt{3}$ **dM1:** Dependent upon the previous M, it is for finding the y coordinate from their x (or vice versa) This may also be scored following the numerator being set to 0 ie using y = xA1: Deduces that $P = \left(-5\sqrt{3}, -\frac{5}{3}\sqrt{3}\right)$ OE. Allow to be $x = \dots y = \dots$ (c) **B1ft:** Explains that this is where $\frac{dy}{dx} = 0$ and so you need to solve y = x and $x^2 - 2xy + 3y^2 = 50$ simultaneously and choose the positive solution (or larger solution). Allow a follow through for candidates who mix up parts (b) and (c)

Alternatively candidates could complete the square $(x-y)^2 + 2y^2 = 50$ and state that y would reach a maximum value when x = y and choose the positive solution from $2y^2 = 50$