Question	Scheme	Marks	AOs
14(a)	Attempts to use $\cos 2t = 1 - 2\sin^2 t \Rightarrow \frac{y - 4}{2} = 1 - 2\left(\frac{x - 3}{2}\right)^2$	M1	2.1
	$\Rightarrow y - 4 = 2 - 4 \times \frac{(x - 3)^2}{4} \Rightarrow y = 6 - (x - 3)^2 *$	A1*	1.1b
		(2)	
(b)	y shaped	M1	1.1b
	(3.6) parabola Fully correct with	A1	1.1b
	'ends' at (1,2) & (5,2)	В1	2.4
	Suitable reason: Eg states as $x = 3 + 2\sin t$, $1 \le x \le 5$	(2)	
(a)	E'dea finds de la consequence de la 7	(3)	
(c)	Either finds the lower value for $k = 7$ or deduces that $k < \frac{37}{4}$	B1	2.2a
	Finds where $x + y = k$ meets $y = 6 - (x - 3)^2$ $\Rightarrow k - x = 6 - (x - 3)^2$ and proceeds to 3TQ in x or y	M1	3.1a
	Correct 3TQ in x $x^2 - 7x + (k+3) = 0$ Or y $y^2 + (7-2k)y + (k^2 - 6k + 3) = 0$	A1	1.1b
	Uses $b^2 - 4ac = 0 \Rightarrow 49 - 4 \times 1 \times (k+3) = 0 \Rightarrow k = \left(\frac{37}{4}\right)$ or $(7 - 2k)^2 - 4 \times 1 \times (k^2 - 6k + 3) = 0 \Rightarrow k = \left(\frac{37}{4}\right)$	M1	2.1
	Range of values for $k = \left\{ k : 7 \leqslant k < \frac{37}{4} \right\}$	A1	2.5
		(5)	
		(10 marks)
(a) M1: Uses co	$\cos 2t = 1 - 2\sin^2 t \text{ in an attempt to eliminate } t$		

A1*: Proceeds to $y = 6 - (x-3)^2$ without any errors

Allow a proof where they start with $y = 6 - (x - 3)^2$ and substitute the parametric coordinates. M1 is scored

for a correct $\cos 2t = 1 - 2\sin^2 t$ but A1 is only scored when both sides are seen to be the same AND a comment is made, hence proven, or similar.

(b)

M1: For sketching a O parabola with a maximum in quadrant one. It does not need to be symmetrical

A1: For sketching a \bigcap parabola with a maximum in quadrant one and with end coordinates of (1,2) and (5,2)

B1: Any suitable explanation as to why C does not include all points of $y = 6 - (x - 3)^2$, $x \in \mathbb{R}$

This should include a reference to the limits on sin or \cos with a link to a restriction on x or y. For example

'As $-1 \le \sin t \le 1$ then $1 \le x \le 5$ ' Condone in words 'x lies between 1 and 5' and strict inequalities

'As $\sin t \le 1$ then $x \le 5$ ' Condone in words 'x is less than 5'

'As $-1 \le \cos(2t) \le 1$ then $2 \le v \le 6$ 'Condone in words 'v lies between 2 and 6'

Withhold if the statement is incorrect Eg "because the domain is $2 \le x \le 5$ "

Do not allow a statement on the top limit of y as this is the same for both curves

(c) B1: Deduces either

- the correct that the lower value of k = 7 This can be found by substituting into (5,2) $x + y = k \Rightarrow k = 7$ or substituting x = 5 into $x^2 - 7x + (k+3) = 0 \Rightarrow 25 - 35 + k + 3 = 0$ $\Rightarrow k = 7$
- or deduces that $k < \frac{37}{4}$ This may be awarded from later work

M1: For an attempt at the upper value for k.

Finds where x + y = k meets $y = 6 - (x - 3)^2$ once by using an appropriate method.

Eg. Sets $k-x=6-(x-3)^2$ and proceeds to a 3TQ

A1: Correct 3TQ $x^2 - 7x + (k+3) = 0$ The = 0 may be implied by subsequent work

M1: Uses the "discriminant" condition. Accept use of $b^2 = 4ac$ oe or $b^2 ... 4ac$ where ... is any inequality

leading to a critical value for k. Eg. one root $\Rightarrow 49 - 4 \times 1 \times (k+3) = 0 \Rightarrow k = \frac{37}{4}$

A1: Range of values for $k = \left\{ k : 7 \le k < \frac{37}{4} \right\}$ Accept $k \in \left[7, \frac{37}{4} \right]$ or exact equivalent

ALT	As above	B1	2.2a
	Finds where $x + y = k$ meets $y = 6 - (x - 3)^2$ once by using an appropriate method. Eg. Sets gradient of $y = 6 - (x - 3)^2$ equal to -1	M1	3.1a
	$-2x+6=-1 \Rightarrow x=3.5$	A1	1.1b
	Finds point of intersection and uses this to find upper value of k . $y = 6 - (3.5 - 3)^2 = 5.75 \text{ Hence using } k = 3.5 + 5.75 = 9.25$	M1	2.1
	Range of values for $k = \{k : 7 \le k < 9.25\}$	A1	2.5