10. The height above ground, H metres, of a passenger on a roller coaster can be modelled by the differential equation

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{H \cos (0.25 t)}{40}
$$

where t is the time, in seconds, from the start of the ride.
Given that the passenger is 5 m above the ground at the start of the ride,
(a) show that $H=5 \mathrm{e}^{0.1 \sin (0.25 t)}$
(b) State the maximum height of the passenger above the ground.

The passenger reaches the maximum height, for the second time, T seconds after the start of the ride.
(c) Find the value of T.

