Question	Scheme	Marks	AOs	
6 (a)	$\left\{ u = \mathrm{e}^{\frac{1}{2}x} \text{ or } x = 2\ln u \Longrightarrow \right\}$			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}\mathrm{e}^{\frac{1}{2}x} \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{2}{u} \text{ or } \mathrm{d}x = \frac{2}{u}\mathrm{d}u \text{ or } 2\mathrm{d}u = u\mathrm{d}x, \text{ etc.}$	B1	1.1b	
	<u>Criteria 1</u> $\left\{ x = 0 \Longrightarrow a = e^0 \text{ and } x = 2 \Longrightarrow b = e^{\frac{1}{2}(2)} \right\}$			
	$a=1, b=e$ or evidence of $0 \rightarrow 1$ and $2 \rightarrow e$			
	Criteria 2 (dependent on the first B1 mark)			
	$\int \frac{6}{(e^{\frac{1}{2}x} + 4)} dx = \int \frac{6}{(u+4)} \cdot \frac{2}{u} du = \int \frac{12}{u(u+4)} du$			
	Either Criteria 1 or Criteria 2	B1	1.1b	
	Both Criteria 1 and Criteria 2			
	and correctly achieves the result $\int_{1}^{e} \frac{12}{u(u+4)} du$	B1	2.1	
		(3)		
(b)	$\frac{12}{u(u+4)} \equiv \frac{A}{u} + \frac{B}{(u+4)} \Longrightarrow 12 \equiv A(u+4) + Bu$	M1	1.1b	
	$u = 0 \Longrightarrow A = 3; \ u = -4 \Longrightarrow B = -3$	A1	1.1b	
	$\left\{ \int \frac{12}{u(u+4)} du = \right\} \int \left(\frac{3}{u} - \frac{3}{(u+4)} \right) du = 3\ln u - 3\ln(u+4)$	M1	3.1a	
		A1ft	1.1b	
	$\left\{\operatorname{So}, \left[\operatorname{3ln} u - \operatorname{3ln}(u+4)\right]_{1}^{\mathrm{e}}\right\}$			
	$= (3\ln e - 3\ln(e+4)) - (3\ln 1 - 3\ln 5)$			
	$= 3\ln e - 3\ln(e+4) + 3\ln 5$			
	$= 3\ln\left(\frac{5e}{e+4}\right) \star$	A1*	2.1	
		(5)		
	(8 marks)			

Question 6 Notes:		
(a)		
B1:	See scheme	
B1:	See scheme	
B1:	See scheme	
	Note for Criteria 2: Must start from one of	
	• $\int y dx$, with integral sign and dx	
	• $\int \frac{6}{e^{\frac{1}{2}x} + 4} dx$, with integral sign and dx	
	• $\int \frac{6}{e^{\frac{1}{2}x} + 4} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$	
	and end at $\int \frac{12}{u(u+4)} du$, with integral sign and du , with no incorrect working	
(b)		
M1:	Writing $\frac{12}{u(u+4)} \equiv \frac{A}{u} + \frac{B}{(u+4)}$, o.e. or $\frac{1}{u(u+4)} \equiv \frac{P}{u} + \frac{Q}{(u+4)}$, o.e. and a complete method for	
	finding the values of both their A and their B (or their P and their Q)	
	Note: This mark can be implied by writing down $\frac{"A"}{u} + \frac{"B"}{(u+4)}$ with values stated for their A	
	and their <i>B</i> where either their $A = 3$ or their $B = -3$	
A1:	Both their $A = 3$ and their $B = -3$ (or their $P = \frac{1}{4}$ and their $Q = -\frac{1}{4}$ with a factor of 12 in front	
	of the integral sign)	
M1:	Complete strategy for finding $\int \frac{12}{u(u+4)} du$, which consists of	
	• expressing $\frac{12}{u(u+4)}$ in partial fractions	
	• and integrating $\frac{12}{u(u+4)} \equiv \frac{M}{u} \pm \frac{N}{(u\pm k)}$; <i>M</i> , <i>N</i> , $k \neq 0$; (i.e. <i>a two-term partial fraction</i>) to	
	obtain both $\pm \lambda \ln(\alpha u)$ and $\pm \mu \ln(\beta(u \pm k)); \lambda, \mu, \alpha, \beta \neq 0$	
A1ft:	Integration of both terms is correctly followed through from their M and their N	
A1*:	Applies limits of e and 1 in u (or applies limits of 2 and 0 in x), subtracts the correct way round and	
	uses laws of logarithms to correctly obtain $3\ln\left(\frac{5e}{e+4}\right)$ with no errors seen.	