
$a=1, b=\mathrm{e}$ or evidence of $0 \rightarrow 1$ and $2 \rightarrow \mathrm{e}$

Criteria 2 (dependent on the first B1 mark)

$\int \frac{6}{\left(\mathrm{e}^{\frac{1}{2} x}+4\right)} \mathrm{d} x=\int \frac{6}{(u+4)} \cdot \frac{2}{u} \mathrm{~d} u=\int \frac{12}{u(u+4)} \mathrm{d} u$
Either Criteria 1 or Criteria 2
Both Criteria 1 and Criteria 2
and correctly achieves the result $\int_{1}^{\mathrm{e}} \frac{12}{u(u+4)} \mathrm{d} u$
B1 1.1b
(b)

	(3)	
$\frac{12}{u(u+4)} \equiv \frac{A}{u}+\frac{B}{(u+4)} \Rightarrow 12 \equiv A(u+4)+B u$ $u=0 \Rightarrow A=3 ; u=-4 \Rightarrow B=-3$	M 1	1.1 b
$\left\{\int \frac{12}{u(u+4)} \mathrm{d} u=\right\} \int\left(\frac{3}{u}-\frac{3}{(u+4)}\right) \mathrm{d} u=3 \ln u-3 \ln (u+4)$	A 1	1.1 b
$\left\{\right.$ So, $\left.[3 \ln u-3 \ln (u+4)]_{1}^{\mathrm{e}}\right\}$	M 1	3.1 a
$=(3 \ln \mathrm{e}-3 \ln (\mathrm{e}+4))-(3 \ln 1-3 \ln 5)$	A 1 ft	1.1 b
$=3 \ln \mathrm{e}-3 \ln (\mathrm{e}+4)+3 \ln 5$		
$=3 \ln \left(\frac{5 \mathrm{e}}{\mathrm{e}+4}\right) *$		
	$\mathrm{~A} 1 *$	2.1

Question 6 Notes:

(a)

B1: See scheme
B1: See scheme
B1: See scheme
Note for Criteria 2: Must start from one of

- $\int y \mathrm{~d} x$, with integral sign and $\mathrm{d} x$
- $\int \frac{6}{\mathrm{e}^{\frac{1}{2} x}+4} \mathrm{~d} x$, with integral sign and $\mathrm{d} x$
- $\int \frac{6}{\mathrm{e}^{\frac{1}{2} x}+4} \frac{\mathrm{~d} x}{\mathrm{~d} u} \mathrm{~d} u$, with integral sign and $\frac{\mathrm{d} x}{\mathrm{~d} u} \mathrm{~d} u$
and end at $\int \frac{12}{u(u+4)} \mathrm{d} u$, with integral sign and $\mathrm{d} u$, with no incorrect working

Writing $\frac{12}{u(u+4)} \equiv \frac{A}{u}+\frac{B}{(u+4)}$, o.e. or $\frac{1}{u(u+4)} \equiv \frac{P}{u}+\frac{Q}{(u+4)}$, o.e. and a complete method for finding the values of both their A and their B (or their P and their Q)
Note: This mark can be implied by writing down $\frac{" A "}{u}+\frac{" B "}{(u+4)}$ with values stated for their A and their B where either their $A=3$ or their $B=-3$

A1: Both their $A=3$ and their $B=-3$ (or their $P=\frac{1}{4}$ and their $Q=-\frac{1}{4}$ with a factor of 12 in front of the integral sign)
M1:
Complete strategy for finding $\int \frac{12}{u(u+4)} \mathrm{d} u$, which consists of

- expressing $\frac{12}{u(u+4)}$ in partial fractions
- and integrating $\frac{12}{u(u+4)} \equiv \frac{M}{u} \pm \frac{N}{(u \pm k)} ; M, N, k \neq 0$; (i.e. a two-term partial fraction) to obtain both $\pm \lambda \ln (\alpha u)$ and $\pm \mu \ln (\beta(u \pm k)) ; \lambda, \mu, \alpha, \beta \neq 0$
A1ft: Integration of both terms is correctly followed through from their M and their N
A1*: Applies limits of e and 1 in u (or applies limits of 2 and 0 in x), subtracts the correct way round and uses laws of logarithms to correctly obtain $3 \ln \left(\frac{5 e}{e+4}\right)$ with no errors seen.

