Question	Scheme	Marks	AOs
7	$3\sin\theta - 4\cos\theta \equiv R\sin(\theta - \alpha); R > 0, 0 < \alpha < 90^{\circ}$		
(a)	$\tan \alpha = \frac{4}{3}$ o.e.	M1	1.1b
	Either $R = 5$ or $\alpha = a \text{ wrt } 53.13$	B1	1.1b
	$5\sin(\theta - 53.13^{\circ})$	A1	1.1b
		(3)	
(b)(i)	$G_{\rm max} = 17 + "5" = 22 (^{\circ}{\rm C})$	B1ft	3.4
		(1)	
(b)(ii)	$G = 17 + 3\sin(15t)^{\circ} - 4\cos(15t)^{\circ}; \ 0 \le t \le 17$		
	$20 = 17 + "5"\sin(15t - "53.13")$	M1	3.4
	$\sin(15t - "53.13") = \frac{3}{"5"}$ or $\sin(\theta - "53.13") = \frac{3}{"5"}$	M1	1.1b
	After midday solution $\Rightarrow 15t - "53.13" = 180 - 36.86989$ $\Rightarrow t = \frac{143.1301 + "53.13"}{15}$	M1	3.1b
	$\Rightarrow t = 13.0840 \Rightarrow$ Time = 6:05 p.m. or 18:05	A1	3.2a
		(4)	
(8 marks)			

Question 7 Notes:		
(a)		
M1:	For either $\tan \alpha = \frac{4}{3}$ or $\tan \alpha = \frac{3}{4}$ or $\tan \alpha = -\frac{4}{3}$ or $\tan \alpha = -\frac{3}{4}$	
B1:	At least one of either $R = 5$ (condone $R = \sqrt{25}$) or $\alpha = a wrt 53.13$	
A1:	$5\sin(\theta - 53.13^{\circ})$	
(b)(i)		
B1ft:	Either 22 or follow through "17 + their <i>R</i> from part (a)"	
(b)(ii)		
M1:	Realisation that the model $G = 17 + 3\sin(15t)^\circ - 4\cos(15t)^\circ$ can be rewritten as	
	$G = 17 + "5" \sin(15t - "53.13")$ and applies $G = 20$	
M1:	Rearranges their equation to give either $\sin(15t - "53.13") = \frac{3}{"5"}$ or $\sin(\theta - "53.13") = \frac{3}{"5"}$	
	Note: This mark can be implied by either	
	• $15t - 53.13'' = 36.86989$ or 143.1301	
	• θ - "53.13" = 36.86989 or 143.1301	
M1:	Uses the model in a complete strategy to find a value for <i>t</i> which is greater than 7 e.g. p.m. solution occurs when $15t - "53.13" = 180 - 36.86989$ and so rearranges to give $t =,$	
	where t is greater than 7	
A1:	Finds the p.m. solution of either $6:05$ p.m. or $18:05$ when the greenhouse temperature is predicted by the model to be 20° C	