Quest	on Scheme	Marks	AOs	
10	$V = 4\pi h(h+6) = 4\pi h^2 + 24\pi h$ $0 \le h \le 25$; $\frac{dV}{dt} = 80\pi$			
(a)	Time = $\frac{4\pi(24)(24+6)}{80\pi} = \frac{2880\pi}{80\pi} = 36$ (s) *	B1 *	3.4	
		(1)		
(b)	When $t = 8$, $V = 80\pi(8) = 640\pi \implies 640\pi = 4\pi h(h+6)$	M1	3.1a	
	$160 = h(h+6) \implies h^2 + 6h - 160 = 0 \implies (h+16)(h-10) = 0 \implies h = \dots$	M1	1.1b	
	${h = -16, \text{ reject}}, h = 10$	A1	1.1b	
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 24\pi$	M1	1.1b	
		A1	1.1b	
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Longrightarrow\right\} (8\pi h + 24\pi)\frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$	M1	3.1a	
	When $h = 10$, $\left\{ \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{80\pi}{(8\pi(10) + 24\pi)} \left\{ = \frac{80\pi}{124\pi} \right\}$	M1	3.4	
	When $h = 10$, $\frac{dh}{dt} = \frac{10}{13}$ (cm s ⁻¹) or awrt 0.769 (cm s ⁻¹)	A1	1.1b	
		(8)		
(9 marks)				
Question 10 Notes:				
(a)				
B1*:	Uses the model to show that it takes 36 seconds to fill the bowl from empty to a height of 24 cm			
(b)				
M1:	Complete strategy to find the value of <i>h</i> when $t = 8$			
M1:	1: Uses $\frac{dV}{dt} = 80\pi$ to deduce the volume of water in the bowl, V, after 8 seconds and sets this			
	esult to $4\pi h(h+6)$			
A1:	Finds $h = 10$			
M1:	Differentiates <i>V</i> with respect to <i>h</i> to give $\pm \alpha h \pm \beta$; α , $\beta \neq 0$			
A1:	$8\pi h + 24\pi$			
M1:	A complete strategy of forming an equation relating $\frac{dh}{dt}$ to 80π			
	E.g. applies $\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$			
M1:	Substitutes their $h = "10"$ into their model for $\frac{dh}{dt}$ which is in the form $\frac{80\pi}{\left(\text{their } \frac{dV}{dh}\right)}$,			
	where their <i>h</i> has been found from solving a quadratic equation in <i>h</i>			
A1:	$\frac{10}{13}$ or awrt 0.769			