Question	Scheme	Marks	AOs
11 (i)	${y = a^x \Rightarrow} \ln y = \ln a^x \Rightarrow \ln y = x \ln a \Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln a$	M1	2.1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = y \ln a \implies \frac{\mathrm{d}y}{\mathrm{d}x} = a^x \ln a \ *$	A1*	1.1b
		(2)	
(i) Alt 1	${y = a^x \Rightarrow} y = e^{x \ln a} \Rightarrow \frac{dy}{dx} = (\ln a)e^{x \ln a}$	M1	2.1
Alt I	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = a^x \ln a \ *$	A1*	1.1b
		(2)	
(ii)	$\frac{\mathrm{d}}{\mathrm{d}y}(2\tan y) = 2\sec^2 y$	M1	1.1b
	${x = 2 \tan y \Rightarrow} \frac{dx}{dy} = 2 \sec^2 y$ or $1 = (2 \sec^2 y) \frac{dy}{dx}$	A1	1.1b
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2(1 + \tan^2 y) \qquad \text{or} \qquad 1 = 2(1 + \tan^2 y) \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	1.1b
	E.g. $\frac{dx}{dy} = 2\left(1 + \left(\frac{x}{2}\right)^2\right) \Rightarrow \frac{dx}{dy} = 2\left(1 + \frac{x^2}{4}\right) \Rightarrow \frac{dx}{dy} = 2 + \frac{x^2}{2}$ $\Rightarrow \frac{dx}{dy} = \frac{4 + x^2}{2} \Rightarrow \frac{dy}{dx} = \frac{2}{4 + x^2}$	A1	2.1
		(4)	
(ii)	${x = 2 \tan y \Rightarrow} y = \arctan\left(\frac{x}{2}\right) \Rightarrow \frac{dy}{dx} = \frac{1}{\left(1 + \left(\frac{x}{2}\right)^2\right)} \times \left(\frac{1}{2}\right)$	M1	1.1b
Alt 1		M1	1.1b
1227 2		A1	1.1b
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2\left(1 + \frac{x^2}{4}\right)} \Rightarrow \frac{dy}{dx} = \frac{1}{\left(2 + \frac{x^2}{2}\right)} \Rightarrow \frac{dy}{dx} = \frac{1}{\left(\frac{4 + x^2}{2}\right)}$ $\Rightarrow \frac{dy}{dx} = \frac{2}{4 + x^2}$	A1	2.1
		(4)	
(6 marks)			

M1:	Applies the natural logarithm to both sides of $y = a^x$, applies the power law of logarithms and
	applies implicit differentiation to the result
A1*:	Shows $\frac{dy}{dx} = a^x \ln a$, with no errors seen
(i)	
Alt 1	
M1:	Rewrites $y = a^x$ as $y = e^{x \ln a}$ and writes $\frac{dy}{dx} = c e^{x \ln a}$, where c can be 1
A1*:	Shows $\frac{dy}{dx} = a^x \ln a$, with no errors seen
(ii)	
M1:	Evidence of 2 tan y being differentiated to 2 sec ² y

Question 11 Notes:

(i)

A1:

M1: Evidence of 2 tan y being differentiated to
$$2 \sec^2 y$$

A1: Differentiates correctly to show that $x = 2 \tan y$ gives $\frac{dx}{dy} = 2 \sec^2 y$ or $1 = (2 \sec^2 y) \frac{dy}{dx}$

M1: Applies $\sec^2 y = 1 + \tan^2 y$ to their differentiated expression

Al: Differentiates correctly to show that
$$x = 2 \tan y$$
 gives $\frac{1}{dy} = 2 \sec^2 y$ of $1 = (2 \sec^2 y) \frac{1}{dx}$

Al: Applies $\sec^2 y = 1 + \tan^2 y$ to their differentiated expression

Shows that $\frac{dy}{dx} = \frac{2}{4 + x^2}$, with no errors seen

A1: Shows that
$$\frac{dy}{dx} = \frac{2}{4 + x^2}$$
, with no errors seen

(ii)

Alt 1

M1: Evidence of $\arctan(\lambda x)$; $\lambda \neq 0$ being differentiated to $\lambda \left(\frac{1}{1 + (\mu x^2)}\right)$; λ , $\mu \neq 0$

M1: Evidence of
$$\arctan(\lambda x)$$
; $\lambda \neq 0$ being differentiated to $\lambda \left(\frac{1}{1+(\mu x^2)}\right)$; λ , $\mu \neq 0$

Note: λ can be 1 for this mark

M1: Differentiates $y = \arctan(\lambda x)$; $\lambda \neq 0$, $\lambda \neq 1$ to give an expression of the form $\frac{1}{(1+(\lambda x)^2)} \times (\lambda)$

Note:
$$\lambda$$
 can be 1 for this mark

Differentiates $y = \arctan(\lambda x)$; $\lambda \neq 0$, $\lambda \neq 1$ to give an expression of the form $\frac{1}{\left(1 + (\lambda x)^2\right)} \times (\lambda)$

M1: Differentiates
$$y = \arctan(\lambda x)$$
; $\lambda \neq 0$, $\lambda \neq 1$ to give an expression of the form $\frac{1}{\left(1 + (\lambda x)^2\right)} \times (\lambda)$

A1: Differentiates $y = \arctan\left(\frac{x}{2}\right)$ correctly to give $\frac{dy}{dx} = \frac{1}{\left(1 + \left(\frac{x}{2}\right)^2\right)} \times \left(\frac{1}{2}\right)$, o.e.

Shows that $\frac{dy}{dx} = \frac{2}{4+x^2}$, with no errors seen