Question	Scheme	Marks	AOs
12 (a)	$y = ax^{2} + c$ $x = 0, y = 4 \Rightarrow c = 4$	M1	3.3
	$x = 50, y = 24 \implies 24 = a(50)^2 + 4 \implies a = \frac{20}{50^2} = \frac{1}{125}$ or 0.008	M1	3.4
	$y = \frac{1}{125}x^2 + 4$ {-50 $\leq x \leq 50$ }	A1	1.1b
		(3)	
(a) Alt 1	$y = ax^{2} + bx + c$ $x = 0, y = 4 \Rightarrow c = 4$ $x = 50, y = 24 \Rightarrow 24 = 2500a + 50b + 4$ $x = -50, y = 24 \Rightarrow 24 = 2500a - 50b + 4$	M1	3.3
	$\begin{aligned} x &= -50, \ y &= 24 \implies 24 \implies 2300a = 30b \mp 4 \\ 0 &= 100b \implies b = 0 \\ 24 &= 2500a \pm 4 \implies a = \frac{20}{2500} = \frac{1}{125} \text{ or } 0.008 \end{aligned}$	M1	3.4
	$y = \frac{1}{125}x^2 + 4 \qquad \{-50 \le x \le 50\}$	A1	1.1b
		(3)	
(b)	$x = 50 - 19 = 31 \implies y = \frac{1}{125}(31)^2 + 4$	M1	3.4
	$y = 11.688 \{ < 12 \} \implies$ Lee can safely inspect the defect	A1	2.2b
		(2)	
(b) A lt 1	$12 = \frac{1}{125}x^2 + 4 \implies 8 = \frac{1}{125}x^2 \implies x = \sqrt{1000}$	M1	3.4
An I	$x = 31.6227766 \Rightarrow \text{Distance from tower} = 50 - 31.6227766$ $= 18.3772234 \{<19\} \Rightarrow \text{Lee can safely inspect the defect}$	A1	2.2b
		(2)	
(c)	 E.g. The thickness/diameter of the cable has not been incorporated into the current model Weather conditions (e.g. strong winds) may affect the shape of the curve Walkway may not be completely horizontal 	B1	3.5b
		(1)	
		(6 1	narks)

Question 12 Notes:			
(a)			
M1:	Attempts to use a model of the form $y = ax^2 + c$ (containing no x term)		
M1:	Uses the constraints $x = 0$, $y = 4$ and $x = 50$, $y = 24$ (or $x = -50$, $y = 24$) to find the		
	values for their c and for their a		
A1:	$y = \frac{1}{125}x^2 + 4$ (Ignore $-50 \le x \le 50$)		
(a)			
Alt 1			
M1:	Attempts to use a model of the form $y = ax^2 + bx + c$ and finds or deduces that $b = 0$		
M1:	Uses the constraints $x = 0$, $y = 4$; $x = 50$, $y = 24$ and $x = -50$, $y = 24$ to find the		
	values for their c, for their b and for their a		
A1:	$y = \frac{1}{125}x^2 + 4$ (Ignore $-50 \le x \le 50$)		
(b)			
M1:	Substitutes $x = 50 - 19 \{= 31\}$ or $x = -50 + 19 \{= -31\}$ into their quadratic model		
A1:	Obtains $y = awrt 11.7$ and infers from the model that Lee can safely inspect the defect		
(b)			
Alt 1			
M1:	Substitutes $y = 12$ into their quadratic model and rearranges to find $x =$		
A1:	Obtains distance from tower as awrt 18.4 and infers from the model that Lee can safely inspect the		
	defect		
(c)			
B1:	See scheme		