Question	Scheme	Marks	AOs
5 (a)	$2x^{2} + 4x + 9 = 2(x \pm k)^{2} \pm \dots \qquad a = 2$	B1	1.1b
	Full method $2x^2 + 4x + 9 = 2(x+1)^2 \pm$ $a = 2 \& b = 1$	M1	1.1b
	$2x^{2} + 4x + 9 = 2(x+1)^{2} + 7$	A1	1.1b
		(3)	
(b)	U shaped curve any position but not through (0,0)	B1	1.2
	y - intercept at $(0,9)$	B1	1.1b
	$\frac{1}{x}$ Minimum at $(-1,7)$	B1ft	2.2a
		(3)	
(c)	(i) Deduces translation with one correct aspect.	M1	3.1a
	Translate $\begin{pmatrix} 2\\ -4 \end{pmatrix}$	A1	2.2a
	(ii) $h(x) = \frac{21}{"2(x+1)^2 + 7"} \implies (\text{maximum}) \text{ value } \frac{21}{"7"} (=3)$	M1	3.1a
	$0 < h(x) \leq 3$	Alft	1.1b
		(4)	
	(10 mar		

(a)

B1: Achieves $2x^2 + 4x + 9 = 2(x \pm k)^2 \pm ...$ or states that a = 2

M1: Deals correctly with first two terms of $2x^2 + 4x + 9$.

Scored for
$$2x^2 + 4x + 9 = 2(x+1)^2 \pm \dots$$
 or stating that $a = 2$ and $b = 1$

A1:
$$2x^2 + 4x + 9 = 2(x+1)^2 + 7$$

Note that this may be done in a variety of ways including equating $2x^2 + 4x + 9$ with the expanded form of $a(x+b)^2 + c \equiv ax^2 + 2abx + ab^2 + c$

(b)

- **B1:** For a U-shaped curve in any position not passing through (0,0). Be tolerant of slips of the pen but do not allow if the curve bends back on itself
- **B1:** A curve with a y intercept on the +ve y axis of 9. The curve cannot just stop at (0,9)Allow the intercept to be marked 9, (0,9) but not (9,0)
- **B1ft:** For a minimum at (-1,7) in quadrant 2. This may be implied by -1 and 7 marked on the axes in the correct places. The curve must be a U shape and not a cubic say.

Follow through on a minimum at (-b, c), marked in the correct quadrant, for their $a(x+b)^2 + c$

(c)(i)

M1: Deduces translation with one correct aspect or states $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$ with no reference to 'translate'.

Allow instead of the word translate, shift or move. g(x) = f(x-2) - 4 can score M1 For example, possible methods of arriving at this deduction are:

- $f(x) \rightarrow g(x)$ is $2x^2 + 4x + 9 \rightarrow 2(x-2)^2 + 4(x-2) + 5$ So g(x) = f(x-2) 4
- $g(x) = 2(x-1)^2 + 3$ New curve has its minimum at (1,3) so $(-1,7) \rightarrow (1,3)$
- Using a graphical calculator to sketch y=g(x) and compares to the sketch of y=f(x)In almost all cases you will not allow if the candidate gives two **different types of** transformations. Eg, stretch and
- A1: Requires both 'translate' and $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$, Allow 'shift' or move' instead of translate.

So condone " Move shift 2 (units) to the right and move 4 (units) down

However, for M1 A1, it is possible to reflect in x = 0 and translate $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$, so please consider all responses.

SC: If the candidate writes translate $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$ or " move 2 (units) to the left and 4 (units) up" score M1 A0

(c)(ii)

M1: Correct attempt at finding the maximum value (although it may not be stated as a maximum)

- Uses part (a) to write $h(x) = \frac{21}{"2(x+1)^2 + 7"}$ and attempts to find $\frac{21}{\text{their "7"}}$
- Attempts to differentiate, sets $4x + 4 = 0 \rightarrow x = -1$ and substitutes into $h(x) = \frac{21}{2x^2 + 4x + 9}$
- Uses a graphical calculator to sketch y=h(x) and establishes the 'maximum' value (...,3)

A1ft: $0 < h(x) \le 3$ Allow for $0 < h \le 3$ (0,3] and $0 < y \le 3$ but not $0 < x \le 3$

Follow through on their $a(x+b)^2 + c$ so award for $0 < h(x) \le \frac{21}{c}$