Question	Scheme	Marks	AOs
8 (a)	$y = x(x+2)(x-4) = x^3 - 2x^2 - 8x$	B1	1.1b
	$\int x^{3} - 2x^{2} - 8x dx \rightarrow \frac{1}{4}x^{4} - \frac{2}{3}x^{3} - 4x^{2}$	M1	1.1b
	Attempts area using the correct strategy $\int_{-2}^{0} y dx$	dM1	2.2a
	$\left[\frac{1}{4}x^4 - \frac{2}{3}x^3 - 4x^2\right]_{-2}^0 = (0) - \left(4 - \frac{-16}{3} - 16\right) = \frac{20}{3} *$	A1*	2.1
		(4)	
(b)	For setting 'their' $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 = \pm \frac{20}{3}$	M1	1.1b
	For correctly deducing that $3b^4 - 8b^3 - 48b^2 + 80 = 0$	A1	2.2a
	Attempts to factorise $3b^4 - 8b^3 - 48b^2 \pm 80 = (b+2)(b+2)(3b^2b20)$	M1	1.1b
	Achieves $(b+2)^2 (3b^2 - 20b + 20) = 0$ with no errors	A1*	2.1
		(4)	
(c)			
	States that between $x = -2$ and $x = 5.442$ the area	B1	1.1b
	above the <i>x</i> -axis = area below the <i>x</i> -axis	B1	2.4
		(2)	
(10 marks)			

(a)

B1: Expands x(x+2)(x-4) to $x^3 - 2x^2 - 8x$ (They may be in a different order)

M1: Correct attempt at integration of their cubic seen in at least two terms.

Look for an expansion to a cubic and $x^n \rightarrow x^{n+1}$ seen at least twice

dM1: For a correct strategy to find the area of R_1

It is dependent upon the previous M and requires a substitution of -2 into \pm their integrated function.

The limit of 0 may not be seen. Condone
$$\left[\frac{1}{4}x^4 - \frac{2}{3}x^3 - 4x^2\right]_{-2}^0 = \frac{20}{3}$$
 oe for this mark

A1*: For a rigorous argument leading to area of $R_1 = \frac{20}{3}$ For this to be awarded the integration must be correct

and the limits must be the correct way around and embedded or calculated values must be seen.

Eg. Look for
$$-\left(4 + \frac{16}{3} - 16\right)$$
 or $-\left(\frac{1}{4}\left(-2\right)^4 - \frac{2}{3}\left(-2\right)^3 - 4\left(-2\right)^2\right)$ oe before you see the $\frac{20}{3}$

Note: It is possible to do this integration by parts. **(b)**

M1: For setting their $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 = \pm \frac{20}{3}$ or $\left[\frac{1}{4}x^4 - \frac{2}{3}x^3 - 4x^2\right]_{-2}^b = 0$

A1: Deduces that $3b^4 - 8b^3 - 48b^2 + 80 = 0$. Terms may be in a different order but expect integer coefficients. It must have followed $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 = -\frac{20}{3}$ oe.

Do not award this mark for $\frac{1}{4}b^4 - \frac{2}{3}b^3 - 4b^2 + \frac{20}{3} = 0$ unless they attempt the second part of this question

by expansion and then divide the resulting expanded expression by 12 **M1:** Attempts to factorise $3b^4 - 8b^3 - 48b^2 \pm 80 = (b+2)(b+2)(3b^2...b...20)$ via repeated division or

inspection. FYI $3b^4 - 8b^3 - 48b^2 + 80 = (b+2)(3b^3 - 14b^2 - 20b + 40)$ Allow an attempt via inspection $3b^4 - 8b^3 - 48b^2 \pm 80 = (b^2 + 4b + 4)(3b^2...b...20)$ but do not allow candidates to just write out

$$3b^4 - 8b^3 - 48b^2 \pm 80 = (b+2)^2 (3b^2 - 20b + 20)$$
 which is really just copying out the given answer.

Alternatively attempts to expand $(b+2)^2(3b^2-20b+20)$ achieving terms of a quartic expression

A1*: Correctly reaches $(b+2)^2 (3b^2 - 20b + 20) = 0$ with no errors and must have = 0

In the alternative obtains both equations in the same form and states that they are same. Allow \checkmark QED etc here.

(c) Please watch for candidates who answer this on Figure 2 which is fine

B1: Sketches the curve and a vertical line to the right of 4 (x = 5.442 may not be labelled.)

B1: Explains that (between x = -2 and x = 5.442) the area above the x-axis = area below the x -axis with appropriate areas shaded or labelled.

Alternatively states that the area between 1.225 and 4 is the same as the area between 4 and 5.442

Another correct statement is that the net area between 0 and 5.442 is $-\frac{20}{3}$

Look carefully at what is written. There are many correct statements/ deductions. Eg. " (area between 0 and 4) - (area between 4 and 5.442) = 20/3". Diagram below for your information.

