Question 10

General points for marking question 10 (i):

- Students who just try random numbers in part (i) are not going to score any marks.
- Students can mix and match methods. Eg you may see odd numbers via logic and even via algebra
- Students who state $4m^2 + 2$ cannot be divided by (instead of is not divisible by) cannot be awarded credit for the accuracy/explanation marks, unless they state correctly that $4m^2 + 2$ cannot be divided by 4 to give an integer.
- Students who write $n^2 + 2 = 4k \implies k = \frac{1}{4}n^2 + \frac{1}{2}$ which is not a whole number gains no credit unless

they then start to look at odd and even numbers for instance

- Proofs via induction usually tend to go nowhere unless they proceed as in the main scheme
- Watch for unusual methods that are worthy of credit (See below)
- If the final conclusion is $n \in \mathbb{R}$ then the final mark is withheld. $n \in \mathbb{Z}^+$ is correct

Watch for methods that may not be in the scheme that you feel may deserve credit.

If you are uncertain of a method please refer these up to your team leader.

Eg 1. Solving part (i) by modulo arithmetic.

All $n \in \mathbb{N} \mod 4$	0	1	2	3
All $n^2 \in \mathbb{N} \mod 4$	0	1	0	1
All $n^2 + 2 \in \mathbb{N} \mod 4$	2	3	2	3

Hence for all n, $n^2 + 2$ is not divisible by 4.

Question 10 (i)	Scheme	Marks	AOs

Notes: Note that M0 A0 M1 A1 and M0 A0 M1 A0 are not possible due to the way the scheme is set up (i)

M1: Awarded for setting up the proof for either the even or odd numbers.

A1: Concludes correctly with a reason why $n^2 + 2$ cannot be divisible by 4 for either n odd or even.

dM1: Awarded for setting up the proof for both even and odd numbers

A1: Fully correct proof with valid explanation and conclusion for all n

Example of an algebraic proof

For $n = 2m$, $n^2 + 2 = 4m^2 + 2$	M1	2.1
Concludes that this number is not divisible by 4 (as the explanation is trivial)	A1	1.1b
For $n = 2m + 1$, $n^2 + 2 = (2m + 1)^2 + 2 =$ FYI $(4m^2 + 4m + 3)$	dM1	2.1
Correct working and concludes that this is a number in the 4 times table add 3 so cannot be divisible by 4 or writes $4(m^2 + m) + 3$ AND stateshence true for all	A1*	2.4
	(4)	

Example of a very similar algebraic proof

For $n = 2m$, $\frac{4m^2 + 2}{4} = m^2 + \frac{1}{2}$	M1	2.1
Concludes that this is not divisible by 4 due to the $\frac{1}{2}$	Al	1.1b
(A suitable reason is required)		
For $n = 2m + 1$, $\frac{n^2 + 2}{4} = \frac{4m^2 + 4m + 3}{4} = m^2 + m + \frac{3}{4}$	dM1	2.1
Concludes that this is not divisible by 4 due to the		
$\frac{3}{4}$ AND states hence for all n , $n^2 + 2$ is not	A1*	2.4
divisible by 4		
	(4)	

Example of a proof via logic

When <i>n</i> is odd, "odd \times odd" = odd	M1	2.1
so $n^2 + 2$ is odd, so (when <i>n</i> is odd) $n^2 + 2$ cannot be divisible by 4	A1	1.1b
When <i>n</i> is even, it is a multiple of 2, so "even \times even" is a multiple of 4	dM1	2.1
Concludes that when <i>n</i> is even $n^2 + 2$ cannot be divisible by 4 because n^2 is divisible by 4AND STATEStrues for all <i>n</i> .	A1*	2.4
	(4)	

Example of proof via contradiction

Sets up the contradiction 'Assume that $n^2 + 2$ is divisible by $4 \implies n^2 + 2 = 4k$ '	M1	2.1
$\Rightarrow n^2 = 4k - 2 = 2(2k - 1)$ and concludes even Note that the M mark (for setting up the contradiction must have been awarded)	A1	1.1b
States that n^2 is even, then <i>n</i> is even and hence n^2 is a multiple of 4	dM1	2.1
Explains that if n^2 is a multiple of 4 then $n^2 + 2$ cannot be a multiple of 4 and hence divisible by 4 Hence there is a contradiction and concludes Hence true for all n .	A1*	2.4
	(4)	

A similar proof exists via contradiction where

A1:
$$n^2 = 2(2k-1) \Longrightarrow n = \sqrt{2} \times \sqrt{2k-1}$$

dM1: States that 2k-1 is odd, so does not have a factor of 2, meaning that *n* is irrational

Question 10 (ii)	Scheme	Marks	AOs

(ii)

M1: States or implies 'sometimes true' or 'not always true' and gives an example where it is not true. A1: and gives an example where it is true,

Proof using numerical values

SOMETIN false	MES TRUE and chooses any number $x: 9.25 < x < 9.5$ and shows Eg $x = 9.4$ $ 3x-28 = 0.2$ and $x-9 = 0.4$ ×	M1	2.3
Then choo	by obsesting a number where it is true Eg $x = 12$ $ 3x - 28 = 8$ $x - 9 = 3$	A1	2.4
		(2)	

Graphical Proof

Sketches both gra Expect shapes and correct. V shape on +ve x	"sometimes true" phs on the same axes. d relative positions to be M1 -axis a +ve gradient intersecting	2.3
Graphs accurate and explains that as there are points and points where $ 3x-28 > x-9$ oe in words like 'dips below at one point'	41	2.4
	(2)	

Proof via algebra

States sometimes true and attempts to solve	11.25	11.000
both $3x-28 < x-9$ and $-3x+28 < x-9$ or one of these with the bound 9.3	M1	2.3
States that it is false when $9.25 < x < 9.5$ or $9.25 < x < 9.3$ or $9.3 < x < 9.5$		2.4
	(2)	

Alt: It is possible to find where it is always true

States sometimes true and attempts to solve where it is just true	M1	2.3
Solves both $3x-28 \ge x-9$ and $-3x+28 \ge x-9$	1411	2.5
States that it is false when $9.25 < x < 9.5$ or $9.25 < x < 9.3$ or $9.3 < x < 9.5$		2.4
	(2)	