Question	Scheme	Marks	AOs
13 (a)	(i) Explains $2x - q = 0$ when $x = 2$ oe Hence $q = 4$ *	B1*	2.4
	(ii) Substitutes $\left(3,\frac{1}{2}\right)$ into $y = \frac{p-3x}{(2x-4)(x+3)}$ and solves	M1	1.1b
	$\frac{1}{2} = \frac{p-9}{(2)\times(6)} \Longrightarrow p-9 = 6 \Longrightarrow p = 15*$	A1*	2.1
		(3)	
(b)	Attempts to write $\frac{15-3x}{(2x-4)(x+3)}$ in PF's and integrates using lns between 3 and another value of x.	M1	3.1a
	$\frac{15-3x}{(2x-4)(x+3)} = \frac{A}{(2x-4)} + \frac{B}{(x+3)}$ leading to A and B	M1	1.1b
	$\frac{15-3x}{(2x-4)(x+3)} = \frac{1.8}{(2x-4)} - \frac{2.4}{(x+3)} \text{ or } \frac{0.9}{(x-2)} - \frac{2.4}{(x+3)} \text{ oe}$	A1	1.1b
	$I = \int \frac{15 - 3x}{(2x - 4)(x + 3)} dx = m \ln(2x - 4) + n \ln(x + 3) + (c)$	— M1	1.1b
	I = $\int \frac{15-3x}{(2x-4)(x+3)} dx = 0.9 \ln(2x-4) - 2.4 \ln(x+3)$ oe	Alft	1.1b
	Deduces that Area Either $\int_{3}^{5} \frac{15-3x}{(2x-4)(x+3)} dx$	— B1	2.2a
	Or $[]_{3}^{5}$		
	Uses correct ln work seen at least once for $\ln 6 = \ln 2 + \ln 3$ or $\ln 8 = 3 \ln 2$	D.Cl	2.1
	$[0.9\ln(6) - 2.4\ln(8)] - [0.9\ln(2) - 2.4\ln(6)]$	— dM1	2.1
	$= 3.3 \ln 6 - 7.2 \ln 2 - 0.9 \ln 2$		
	$= 3.3 \ln 3 - 4.8 \ln 2$	A1	1.1b
		(8)	
(11mark			

(a)

B1*: Is able to link 2x - q = 0 and x = 2 to explain why q = 4

Eg "The asymptote x = 2 is where 2x - q = 0 so $4 - q = 0 \Longrightarrow q = 4$ "

"The curve is not defined when $2 \times 2 - q = 0 \Longrightarrow q = 4$ "

There **must be some words** explaining why q = 4 and in most cases, you should see a reference to either "the asymptote x = 2", "the curve is not defined at x = 2", 'the denominator is 0 at x = 2"

M1: Substitutes
$$\left(3, \frac{1}{2}\right)$$
 into $y = \frac{p-3x}{(2x-4)(x+3)}$ and solves
Alternatively substitutes $\left(3, \frac{1}{2}\right)$ into $y = \frac{15-3x}{(2x-4)(x+3)}$ and shows $\frac{1}{2} = \frac{6}{(2)\times(6)}$ or
A1*: Full proof showing all necessary steps $\frac{1}{2} = \frac{p-9}{(2)\times(6)} \Rightarrow p-9 = 6 \Rightarrow p = 15$

In the alternative there would have to be some recognition that these are equal eg \checkmark hence p = 15 (b)

M1: Scored for an overall attempt at using PF's and integrating with lns seen with sight of limits 3 and another value of x.

M1:
$$\frac{15-3x}{(2x-4)(x+3)} = \frac{A}{(2x-4)} + \frac{B}{(x+3)}$$
 leading to A and B
A1: $\frac{15-3x}{(2x-4)(x+3)} = \frac{1.8}{(2x-4)} - \frac{2.4}{(x+3)}$, or for example $\frac{0.9}{(x-2)} - \frac{2.4}{(x+3)}$, $\frac{9}{(10x-20)} - \frac{12}{(5x+15)}$ oe Must be written in PF form, not just for correct A and B

M1: Area
$$R = \int \frac{15-3x}{(2x-4)(x+3)} dx = m \ln(2x-4) + n \ln(x+3)$$

OR $\int \frac{15-3x}{(2x-4)(x+3)} dx = m \ln(x-2) + n \ln(x+3)$
Note that $\int \frac{l}{(x-2)} dx \rightarrow l \ln(kx-2k)$ and $\int \frac{m}{(x+3)} dx \rightarrow m \ln(nx+3n)$
A1ft: $= \int \frac{15-3x}{(2x-4)(x+3)} dx = 0.9 \ln(2x-4) - 2.4 \ln(x+3)$ oe. FT on their A and B

B1: Deduces that the limits for the integral are 3 and 5. It cannot just be awarded from 5 being marked on

Figure 4. So award for sight of
$$\int_{3}^{5} \frac{15-3x}{(2x-4)(x+3)} (dx)$$
 or $[\dots, \dots, n]_{3}^{5}$ having performed an integral which

may be incorrect

dM1: Uses correct ln work seen at least once eg $\ln 6 = \ln 2 + \ln 3$, $\ln 8 = 3\ln 2$ or $m\ln 6k - m\ln 2k = m\ln 3$ This is an attempt to get either of the above ln's in terms of ln2 and/or ln3

It is dependent upon the correct limits and having achieved $m \ln(2x-4) + n \ln(x+3)$ oe

A1: $= 3.3 \ln 3 - 4.8 \ln 2$ oe