Question	Scheme	Marks	AOs
8 (a)) (a) $P = (210, -5)$	B1	1.1b
		B1	1.1b
		(2)	
(b)	$5\cos(x-30^\circ) = 4\sin x$		
	Uses the compound angle identity and attempts to collect terms		
	$5\cos x\cos 30^{\circ} + 5\sin x\sin 30^{\circ} = 4\sin x$	M1	2.1
	$5\cos x\cos 30^\circ = \sin x \left(4 - 5\sin 30^\circ\right)$		
	Uses $\frac{\sin x}{\cos x} = \tan x \tan x = \frac{5\cos 30^{\circ}}{4-5\sin 30^{\circ}} = \frac{5\sqrt{3}}{3}$ or awrt 2.89	M1	2.1
		A1	1.1b
	x = 70.9, 250.9	A1	1.1b
		(4)	
(c)	Deduces the number of roots $= 40$	B1ft	2.2a
	Offers a correct explanation. Eg States that there are 10 cycles of		
	360° and $x \rightarrow 2x$ will mean that there are 4 roots between 0 and 360° (not 2)	B1	2.4
		(2)	
		I	(8 marks)
Notes: (a) B1: For one correct coordinate, Either $P = (5)$ or $P = (210,)$ but allow $P = (210^{\circ})$			
B1: For $P = (210, -5)$ but allow $P = (210^{\circ}, -5)$			
(b)			
M1: Attempts to use the identity $5\cos(x-30^\circ) \equiv 5\cos x \cos 30^\circ + 5\sin x \sin 30^\circ$ and attempts to collect			
terms. If the candidate divides by $\cos x$ first then it is for collecting terms in $\tan x$			
M1: Divides by $\cos x$, uses the identity $\tan x = \frac{\sin x}{\cos x}$ leading to $\tan x = \dots$			
A1: $\tan x = \frac{5\sqrt{3}}{3}$ but allow $\tan x = $ awrt 2.89			

A1: Both x = 70.9, 250.9 (awrt 1dp) and no other answers. Allow $x = 70.9^{\circ}, 250.9^{\circ}$

(c)

B1ft: Deduces that there will be 40 roots but follow through on $20 \times$ the number of roots the candidate has between 0 and 360° in (b)

B1: Explains that 3600° is 10 cycles of 360° and $x \rightarrow 2x$ will **double** the number roots between 0 and 360°