Question	Scheme	Marks	AOs
13 (a)	Uses $V = \frac{1}{3}\pi r^2 h$ with $\frac{r}{h} = \frac{2.5}{4}$ to establish $V = f(h^3)$ and differentiates	M1	2.1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{75}{192}\pi h^2$	A1	1.1b
	States or uses $\frac{\mathrm{d}V}{\mathrm{d}t} = -\frac{\pi}{512}\sqrt{h}$	B1	1.1b
	Uses $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ with their $\frac{dV}{dt}$ and their $\frac{dV}{dh}$	M1	3.1b
	$\frac{\pi}{512}\sqrt{h} = \frac{75}{192}\pi h^2 \times \frac{dh}{dt} \Rightarrow h^{\frac{3}{2}}\frac{dh}{dt} = -\frac{1}{200}$	A1*	2.1
		(5)	
(b)	$\int h^{\frac{3}{2}} dh = -\int \frac{1}{200} dt \Rightarrow \frac{2}{5} h^{\frac{5}{2}} = -\frac{1}{200} t + c$	M1	1.1b
	Substitutes $t = 0, h = 4 \Rightarrow c = \left(\frac{64}{5}\right)$	dM1	3.4
	$\frac{2}{5}h^{\frac{5}{2}} = -\frac{1}{200}t + \frac{64}{5} \text{ oe}$	A1	3.3
	1	(3)	
(c)	Substitutes $h = 0 \implies 0 = -\frac{1}{200}t + \frac{64}{5} \implies t = \dots$	M1	3.4
	t = 2560 seconds = 42 minutes 40 seconds	A1	3.2a
	States that the "real" time and the "predicted" times are very close so model seems suitable	A1	3.5a
		(3)	
			(11 marks)
Notes:			
(a) M1: Uses $V = \frac{1}{3}\pi r^2 h$ with $\frac{r}{h} = \frac{2.5}{4}$ or equivalent to establish V as a function of h^3 which is then			
differentiated to an expression in h^2			
$\mathbf{A1:} \ \frac{\mathrm{d}V}{\mathrm{d}h} = \frac{75}{192}\pi h^2$			
B1: Uses the information given in the question to states or uses $\frac{dV}{dt} = -\frac{\pi}{512}\sqrt{h}$			
M1: Uses $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ with their $\frac{dV}{dt}$ and their $\frac{dV}{dh}$ to form an equation linking $\frac{dh}{dt}$ and h			
A1*: Proceeds correctly to the given equation $h^{\frac{3}{2}} \frac{dh}{dt} = -\frac{1}{200}$			
(h)			

A1: Finds the equation of the model Eg.
$$\frac{2}{5}h^{\frac{5}{2}} = -\frac{1}{200}t + \frac{64}{5}$$
 or equivalent such as $h^{\frac{5}{2}} = -\frac{1}{80}t + 32$

A1: Achieves t = 2560 seconds and converts this or the 43 minutes as required in order to test the model A1: States that the "real" time and the "predicted" times are very close so the model seems suitable

M1: Integrates both sides to $ah^2 = bt + c$. Condone the omission of +c for this mark

dM1: Uses the model to find c

M1: Uses the model with h = 0 and proceeds to find t