Question	Scheme	Marks	AOs
14(a)	Uses $y = 3\sin 2t = 6\sin t \cos t$ and attempts to square	M1	2.1
	$y^2 = 9x^2\cos^2 t$	A1	1.1b
	Uses $\cos^2 t = 1 - \sin^2 t$ with $\sin t = \frac{x}{2}$		
	$y^2 = 9x^2 \left(1 - \frac{x^2}{4}\right)$	M1	2.1
	$y^2 = \frac{9}{4}x^2(4-x^2)$	A1	1.1b
		(4)	
(b)	Deduces that the radius of the circle is given by $r^2 = x^2 + y^2$	M1	3.1a
	$r^2 = x^2 + \frac{9}{4}x^2(4 - x^2)$	A1	1.1b
	Circle touches curve when r is a maximum		
	so differentiate $r^2 = 10x^2 - \frac{9}{4}x^4 \Longrightarrow 2r\frac{dr}{dx} = 20x - 9x^3$	M1	3.1a
	and set $\frac{\mathrm{d}r}{\mathrm{d}x} = 0 \Longrightarrow x = \sqrt{\frac{20}{9}}$		
	Finds $r^2 = 10x^2 - \frac{9}{4}x^4$ with their $x = \sqrt{\frac{20}{9}}$	dM1	2.1
	$r = \frac{10}{3}$	A1	1.1b
		(5)	
			(9 marks)

(a)

M1: Uses $\sin 2t = 2\sin t \cos t$ and attempts to square $y = 3\sin 2t$

A1:
$$y^2 = 9x^2 \cos^2 t$$

M1: Uses $\cos^2 t = 1 - \sin^2 t$ with $\sin t = \frac{x}{2}$ in an attempt to get an equation in just x and y

A1:
$$y^2 = \frac{9}{4}x^2(4-x^2)$$

Note: It is possible to use the given equation $y^2 = kx^2(4-x^2)$. The first M1 is scored for substituting in both x and y and using $\sin 2t = 2\sin t \cos t$. The second M1 is for using $4 - 4\sin^2 t = 4\cos^2 t$. For the A1 to be awarded there must be some minimal statement such as \checkmark it can be expressed in this form

(b)

M1: For deducing that the radius of the circle can be found from $x^2 + y^2$

A1: A correct statement for r^2 in terms of one variable.

Look for
$$r^2 = x^2 + \frac{9}{4}x^2(4-x^2)$$
 or $r^2 = 4\sin^2 t + 9\sin^2 2t$

M1: For a full method of finding a value of x or t where the circle touches the curve.

For this to be scored expect to see an attempt at implicit differentiation (or equivalent) followed by an attempt to find where $\frac{dr}{dx} = 0$.

Also scored for an attempt at completing the square $r^2 = 10x^2 - \frac{9}{4}x^4 = -\frac{9}{4}\left(x^2 - \frac{20}{9}\right)^2 + \frac{100}{9}$

M1: For showing all steps required to find r or r^2

A1:
$$r = \frac{10}{3}$$

(b)	Deduces that the radius of the circle is given by		
	$r^2 = x^2 + y^2$	M1	2.2a
	$r^2 = 4\sin^2 t + 9\sin^2 2t$	A1	1.1b
	Circle touches curve when r is a maximum so differentiate $\Rightarrow 2r \frac{dr}{dt} = 8 \sin t \cos t + 36 \sin 2t \cos 2t$ And set $\frac{dr}{dt} = 0 \Rightarrow 0 = 4 \times 2 \sin t \cos t + 36 \sin 2t \cos 2t$	M1	3.1a
	Finds $r^2 = 4\sin^2 t + 9\sin^2 2t$ with their $\cos 2t = -\frac{1}{9}$	dM1	2.1
	$\cos 2t = -\frac{1}{9} \Longrightarrow \sin^2 t = \frac{5}{9}$ and $r^2 = 4 \times \frac{5}{9} + 9\left(1 - \frac{1}{81}\right) = \frac{100}{9}$	A1	1.1b
		(5)	
A 14	simultaneous equations:		

Alt via simultaneous equations:

M1: Solves $r^2 = x^2 + y^2$ and $y^2 = \frac{9}{4}x^2(4-x^2)$ to get an equation in either x or y. A1: Either $9x^4 - 40x^2 + 4r^2 = 0$ or $9y^4 + (40 - 18r^2)y^2 + 9r^4 - 36r^2 = 0$

M1: Attempts $b^2 - 4ac = 0$ for their quartic equation of a form $ax^4 + bx^2 + c = 0$ where either *a*, *b* or *c* are dependent upon *r*

dM1: Uses $b^2 - 4ac = 0$ for their quartic equation of a form $ax^4 + bx^2 + c = 0$ where either a, b or c are dependent upon r to find a value for r

A1:
$$r = \frac{10}{3}$$