Question	Scheme	Marks	AOs
2	$4^{3p-1} = 5^{210} \Rightarrow (3p-1)\log 4 = 210\log 5$	M1	1.1b
	$\Rightarrow 3p = \frac{210\log 5}{\log 4} + 1 \Rightarrow p = \dots$	dM1	2.1
	p = awrt 81.6	A1	1.1b
		(3)	
			(3 marks)

Notes:

M1: Takes logs of both sides and uses the power law on **each** side.

Condone a missing bracket on lhs and slips.

Award for any base including ln but the logs must be the same base.

dM1: A full method leading to a value for p.

It is dependent upon the previous M mark and there must be an attempt to change the subject of the equation in the correct order.

Look for
$$(3p-1)\log 4 = 210\log 5 \Rightarrow 3p = \frac{210\log 5}{\log 4} \pm 1 \Rightarrow p = \dots$$
 condoning slips.

You may see numerical versions E.g. $(3p-1)\times0.60 = 210\times0.7 \Rightarrow 1.8p-0.6 = 147 \Rightarrow p = 82$

Use of incorrect log laws would be dM0. E.g $(3p-1)\log 4 = 210\log 5 \Rightarrow 3p = 210\log \frac{5}{4} \pm 1$

A1: awrt 81.6 following a correct method. Bracketing errors can be recovered for full marks A correct answer with no working scores 0 marks. The demand in the question is clear.

There are alternatives:

E.g. A starting point could be
$$4^{3p-1} = 5^{210} \Rightarrow \frac{4^{3p}}{4} = 5^{210}$$

but the first M mark is still for using the power law correctly on each side

In such a method the dM1 mark is for using all log rules correctly and proceeding to a value for p.

Using base 4 or 5

E.g.
$$4^{3p-1} = 5^{210} \Rightarrow (3p-1) = \log_4 5^{210}$$

The M mark is not scored until $(3p-1) = 210 \log_4 5$