Question	Scheme	Marks	AOs
3 (a)	$\overrightarrow{AB} = (3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}) - (2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k})$	M1	1.1b
	= i $-$ 8 j $+$ 2 k	A1	1.1b
		(2)	
(b)	States $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$	M1	1.1b
	Explains that as <i>OC</i> is parallel to <i>AB</i> , so <i>OABC</i> is a trapezium.	A1	2.4
		(2)	
			(4 marks)
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm 1i \pm 8j \pm 2k$.

A1:
$$\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$$
 or $\begin{pmatrix} 1\\ -8\\ 2 \end{pmatrix}$ but not $(1, -8, 2)$

(b)

M1: Compares their i-8j+2k with 2i-16j+4k by stating any one of

•
$$\overrightarrow{OC} = 2 \times \overrightarrow{AB}$$

• $\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$

• $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$ or vice versa

This may be awarded if AB was subtracted "the wrong way around" or if there was one numerical slip

A1: A full explanation as to why *OABC* is a trapezium.

Requires fully correct calculations, so part (a) must be $\overrightarrow{AB} = (\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$

It requires a reason and minimal conclusion.

Example 1:

 $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$, therefore *OC* is parallel to *AB* so *OABC* is a trapezium

Example 2:

A trapezium has one pair of parallel sides. As $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$, they are parallel, so \checkmark . Example 3

As $\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$, *OC* and *AB* are parallel, so proven

Example 4

Accept as $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$, they are parallel so true

Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with **only one** pair of parallel sides. Any calculations to do with sides *OA* and *CB* in this question may be ignored, even if incorrect.