Question	Scheme	Marks	AOs
3 (a)	$\overrightarrow{A B}=(3 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k})-(2 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k})$	M1	1.1b
	$=\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$	A1	1.1b
		(2)	
(b)	States $\quad \overrightarrow{O C}=2 \times \overrightarrow{A B}$	M1	1.1b
	Explains that as $O C$ is parallel to $A B$, so $O A B C$ is a trapezium.	A1	2.4
		(2)	
(4 marks)			
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm \mathbf{1 i} \pm 8 \mathbf{j} \pm 2 \mathbf{k}$.
A1: $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ or $\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$ but not $(1,-8,2)$
(b)

M1: Compares their $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ with $2 \mathbf{i}-16 \mathbf{j}+4 \mathbf{k}$ by stating any one of

- $\overrightarrow{O C}=2 \times \overrightarrow{A B}$
- $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$
- $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$ or vice versa

This may be awarded if $A B$ was subtracted "the wrong way around" or if there was one numerical slip

A1: A full explanation as to why $O A B C$ is a trapezium.
Requires fully correct calculations, so part (a) must be $\overrightarrow{A B}=(\mathbf{i}-8 \mathbf{j}+2 \mathbf{k})$
It requires a reason and minimal conclusion.
Example 1:
$\overrightarrow{O C}=2 \times \overrightarrow{A B}$, therefore $O C$ is parallel to $A B$ so $O A B C$ is a trapezium
Example 2:
A trapezium has one pair of parallel sides. As $\overrightarrow{O C}=2 \times \overrightarrow{A B}$, they are parallel, so \checkmark.
Example 3
As $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$, $O C$ and $A B$ are parallel, so proven

Example 4

Accept as $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$, they are parallel so true

Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with only one pair of parallel sides. Any calculations to do with sides $O A$ and $C B$ in this question may be ignored, even if incorrect.

