Question	Scheme	Marks	AOs
6 (a)	$R = \sqrt{5}$	B1	1.1b
	$\tan \alpha = 2 \Rightarrow \alpha = \dots$	M1	1.1b
	$\alpha = 1.107$	A1	1.1b
		(3)	
	$\theta = 5 + \sqrt{5}\sin\left(\frac{\pi t}{12} + 1.107 - 3\right)$		
(b)	$(5+\sqrt{5})$ °C or awrt 7.24 °C	B1ft	2.2a
		(1)	
(c)	$\frac{\pi t}{12} + 1.107 - 3 = \frac{\pi}{2} \Longrightarrow t =$	M1	3.1b
	t = awrt 13.2	A1	1.1b
	Either 13:14 or 1:14 pm or 13 hours 14 minutes after midnight.	A1	3.2a
		(3)	

(7 marks)

Notes:

(a)

B1: $R = \sqrt{5}$ only.

M1: Proceeds to a value of α from $\tan \alpha = \pm 2$, $\tan \alpha = \pm \frac{1}{2}$, $\sin \alpha = \pm \frac{2}{"R"}$ OR $\cos \alpha = \pm \frac{1}{"R"}$

It is implied by either awrt 1.11 (radians) or 63.4 (degrees)

A1: α = awrt 1.107

(b)

B1ft: Deduces that the maximum temperature is $(5+\sqrt{5})^{\circ}$ C or awrt 7.24°C Remember to isw Condone a lack of units. Follow through on their value of R so allow $(5+"R")^{\circ}$ C

(c)

M1: An complete strategy to find t from $\frac{\pi t}{12} \pm 1.107 - 3 = \frac{\pi}{2}$.

Follow through on their 1.107 but the angle must be in radians.

It is possible via degrees but only using $15t \pm 63.4 - 171.9 = 90$

A1: awrt t = 13.2

A1: The question asks for the time of day so accept either 13:14, 1:14 pm, 13 hours 14 minutes after midnight, 13h 14, or 1 hour 14 minutes after midday. If in doubt use review

It is possible to attempt parts (b) and (c) via differentiation but it is unlikely to yield correct results.

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\pi}{12}\cos\left(\frac{\pi t}{12} - 3\right) - \frac{2\pi}{12}\sin\left(\frac{\pi t}{12} - 3\right) = 0 \Rightarrow \tan\left(\frac{\pi t}{12} - 3\right) = \frac{1}{2} \Rightarrow t = 13.23 = 13:14 \text{ scores M1 A1 A1}$$

$$\frac{d\theta}{dt} = \cos\left(\frac{\pi t}{12} - 3\right) - 2\sin\left(\frac{\pi t}{12} - 3\right) = 0 \Rightarrow \tan\left(\frac{\pi t}{12} - 3\right) = \frac{1}{2} \Rightarrow t = 13.23 = 13:14 \text{ they can score M1 A0 A1 (SC)}$$

A value of t = 1.23 implies the minimum value has been found and therefore incorrect method M0.

.....