Question	Scheme	Marks	AOs
7	Attempts equation of line Eg Substitutes $(-2,13)$ into $y = mx + 25$ and finds m	M1	1.1b
	Equation of <i>l</i> is $y = 6x + 25$	A1	1.1b
	Attempts equation of <i>C</i> Eg Attempts to use the intercept $(0, 25)$ within the equation $y = a(x\pm 2)^2 + 13$, in order to find <i>a</i>	M1	3.1a
	Equation of <i>C</i> is $y = 3(x+2)^2 + 13$ or $y = 3x^2 + 12x + 25$	A1	1.1b
	Region <i>R</i> is defined by $3(x+2)^2 + 13 < y < 6x + 25$ o.e.	B1ft	2.5
		(5)	
			(5 marks)

Notes:

The first two marks are awarded for finding the equation of the line

M1: Uses the information in an attempt to find an equation for the line *l*.

E.g. Attempt using two points: Finds $m = \pm \frac{25-13}{2}$ and uses of one of the points in their y = mx + c or

equivalent to find c. Alternatively uses the intercept as shown in main scheme.

A1: y = 6x + 25 seen or implied. This alone scores the first two marks. Do not accept l = 6x + 25It must be in the form y = ... but the correct equation can be implied from an inequality. E.g. < y < 6x + 25

The next two marks are awarded for finding the equation of the curve

M1: A complete method to find the constant *a* in $y = a(x \pm 2)^2 + 13$ or the constants *a*, *b* in $y = ax^2 + bx + 25$. An alternative to the main scheme is deducing equation is of the form $y = ax^2 + bx + 25$ and setting and solving a pair of simultaneous equations in *a* and *b* using the point (-2, 13) the gradient being 0 at x = -2. Condone slips. Implied by $C = 3x^2 + 12x + 25$ or $3x^2 + 12x + 25$

FYI the correct equations are 13 = 4a - 2b + 25(2a - b = -6) and -4a + b = 0

A1: $y = 3(x+2)^2 + 13$ or equivalent such as $y = 3x^2 + 12x + 25$, $f(x) = 3(x+2)^2 + 13$.

Do not accept $C = 3x^2 + 12x + 25$ or just $3x^2 + 12x + 25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3x^2 + 12x + 25 \, dx$

B1ft: Fully defines the region *R*. Follow through on their equations for *l* and *C*.

Allow strict or non -strict inequalities as long as they are used consistently.

E.g. Allow for example " $3(x+2)^2 + 13 < y < 6x + 25$ " " $3(x+2)^2 + 13 \le y \le 6x + 25$ "

Allow the inequalities to be given separately, e.g. y < 6x + 25, $y > 3(x+2)^2 + 13$. Set notation may be used so $\{(x, y): y > 3(x+2)^2 + 13\} \cap \{(x, y): y < 6x + 25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$ Incorrect examples include "y < 6x + 25 or $y > 3(x+2)^2 + 13$ ", $\{(x, y): y > 3(x+2)^2 + 13\} \cup \{(x, y): y < 6x + 25\}$

Values of *x* could be included but they must be correct. So $3(x+2)^2 + 13 < y < 6x + 25$, x < 0 is fine If there are multiple solutions mark the final one.