Question	Scheme	Marks	AOs
8	Any equation involving an exponential of the correct form. See notes	M1	3.1b
	$n = Ae^{kt}$ (where A and k are positive constants)	A1	1.1b
		(2)	
			(2 marks)
Notes:			

M1: Any equation of the correct form, involving *n* and an exponential in *t*.

So allow for example $n = e^{\pm t}$, $n = Ae^{\pm t}$, $n = Ae^{\pm kt}$ condoning $n = A + Be^{\pm t}$ Condone an intermediate form where *n* has not been made the subject. E.g Allow $\ln n = kt + c$ but also condone $\ln n = kt$

A1: E.g. $n = Ae^{kt}$, $n = e^{kt+c}$, $n = e^{kt}e^{c}$ There is no requirement to state that A and k are positive constants Note that the two constants need to be different.

Mark the final answer so $n = e^{kt+c}$ followed by $n = e^{kt} + e^{c}$ o.e. $n = e^{kt} + A$ such as is M1 A0

You may see solutions that don't include "e".

These are fine so you can include versions of $n = Ak^{t}$ using the same marking criteria as above FYI $\frac{dn}{dt} = Ak^{t} \times \ln k = \ln k \times n$ so $\frac{dn}{dt} \propto n$