Question	Scheme	Marks	AOs
9(a)	$f(x) = 4(x^2 - 2)e^{-2x}$		
	Differentiates to $e^{-2x} \times 8x + 4(x^2 - 2) \times -2e^{-2x}$	M1 A1	1.1b 1.1b
	$f'(x) = 8e^{-2x} \left\{ x - \left(x^2 - 2\right) \right\} = 8\left(2 + x - x^2\right)e^{-2x} *$	A1*	2.1
		(3)	
(b)	States roots of $f'(x) = 0$ $x = -1, 2$	B1	1.1b
	Substitutes one <i>x</i> value to find a <i>y</i> value	M1	1.1b
	Stationary points are $(-1, -4e^2)$ and $(2, 8e^{-4})$	A1	1.1b
		(3)	
(c)	(i) Range $\left[-8e^2,\infty\right)$ o.e. such as $g(x) \ge -8e^2$	B1ft	2.5
	 (ii) For Either attempting to find 2f(0) - 3 = 2×-8-3 = (-19) and identifying this as the lower bound Or attempting to find 2×"8e⁻⁴ "-3 and identifying this as the upper bound 	M1	3.1a
	Range $[-19, 16e^{-4} - 3]$	A1	1.1b
		(3)	
	·		(9 marks)
Notes:			

(a)

M1: Attempts the product rule and uses $e^{-2x} \rightarrow ke^{-2x}$, $k \neq 0$

If candidate states $u = 4(x^2 - 2), v = e^{-2x}$ with $u' = ..., v' = ...e^{-2x}$ it can be implied by their vu' + uv'If they just write down an answer without working award for $f'(x) = pxe^{-2x} \pm q(x^2 - 2)e^{-2x}$ They may multiply out first $f(x) = 4x^2e^{-2x} - 8e^{-2x}$. Apply in the same way condoning slips

Alternatively attempts the quotient rule on $f(x) = \frac{u}{v} = \frac{4(x^2 - 2)}{e^{2x}}$ with $v' = ke^{2x}$ and $f'(x) = \frac{vu' - uv'}{v^2}$ A1: A correct f'(x) which may be unsimplified.

Via the quotient rule you can award for $f'(x) = \frac{8xe^{2x} - 8(x^2 - 2)e^{2x}}{e^{4x}}$ o.e.

A1*: Proceeds correctly to given answer showing all necessary steps.

The f'(x) or $\frac{dy}{dx}$ must be present at some point in the solution This is a "show that" question and there must not be any errors. All bracketing must be correct. Allow a candidate to move from the **simplified** unfactorised answer of f'(x) = $8xe^{-2x} - 8(x^2 - 2)e^{-2x}$ to the given answer in one step.

Do not allow it from an **unsimplified** $f'(x) = 4 \times 2xe^{-2x} + 4(x^2 - 2) \times -2e^{-2x}$

Allow the expression / bracketed expression to be written in a different order. So, for example, $8(x - x^2 + 2)e^{-2x}$ is OK

(b)

B1: States or implies x = -1, 2 (as the roots of f'(x) = 0)

M1: Substitutes one x value of their solution to f'(x) = 0 in f(x) to find a y value.

Allow decimals here (3sf). FYI, to 3 sf, $-4e^2 = -29.6$ and $8e^{-4} = 0.147$

Some candidates just write down the x coordinates but then go on in part (c) to find the ranges using the y coordinates. Allow this mark to be scored from work in part (c)

A1: Obtains $(-1, -4e^2)$ and $(2, 8e^{-4})$ as the stationary points. This must be scored in (b). Remember to isw

after a correct answer. Allow these to be written separately. E.g. x = -1, $y = -4e^{2}$

Extra solutions, e.g. from x = 0 will be penalised on this mark.

(c)(i)

B1ft: For a correct range written using correct notation.

Follow through on 2 \times their minimum "y" value from part (b), providing it is negative. Condone a decimal answer if this is consistent with their answer in (b) to 3sf or better.

Examples of correct responses are
$$[-8e^2,\infty)$$
, $g \ge -8e^2$, $y \ge -8e^2$, $\{q \in \mathbb{R}, q \ge -8e^2\}$

(c)(ii)

M1: See main scheme. Follow through on $2 \times$ their "8e⁻⁴ "-3 for the upper bound.

A1: Range
$$\left[-19, 16e^{-4} - 3\right]$$
 o.e. such as $-19 \le y \le 16e^{-4} - 3$ but must be exact