
Question	Scheme	Marks	AOs
11 (a)	Solves $x^2 + y^2 = 100$ and $(x - 15)^2 + y^2 = 40$ simultaneously to find x or y E.g. $(x - 15)^2 + 100 - x^2 = 40 \Rightarrow x =$	M1	3.1a
	Either $\Rightarrow -30x + 325 = 40 \Rightarrow x = 9.5$ Or $y = \frac{\sqrt{39}}{2} = \operatorname{awrt} \pm 3.12$	A1	1.1b
	Attempts to find the angle <i>AOB</i> in circle C_1 Eg Attempts $\cos \alpha = \frac{"9.5"}{10}$ to find α then $\times 2$	M1	3.1a
	Angle $AOB = 2 \times \arccos\left(\frac{9.5}{10}\right) = 0.635 \operatorname{rads}(3sf) *$	A1*	2.1
		(4)	
(b)	Attempts $10 \times (2\pi - 0.635) = 56.48$	M1	1.1b
	Attempts to find angle AXB or AXO in circle C_2 (see diagram) E.g. $\cos \beta = \frac{15 - 9.5}{\sqrt{40}} \Rightarrow \beta =$ (Note AXB = 1.03 rads)	M1	3.1a
	Attempts $10 \times (2\pi - 0.635) + \sqrt{40} \times (2\pi - 2\beta)$	dM1	2.1
	= 89.7	A1	1.1b
		(4)	
	· · · · · · · · · · · · · · · · · · ·		(8 marks

(a)

M1: For the key step in an attempt to find either coordinate for where the two circles meet. Look for an attempt to set up an equation in a single variable leading to a value for *x* or *y*.

A1:
$$x = 9.5$$
 (or $y = \frac{\sqrt{39}}{2} = awrt \pm 3.12$)

M1: Uses the radius of the circle and correct trigonometry in an attempt to find angle AOB in circle C_1

E.g. Attempts $\cos \alpha = \frac{"9.5"}{10}$ to find α then $\times 2$

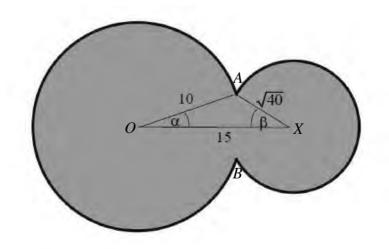
Alternatives include
$$\tan \alpha = \frac{\sqrt{100 - "9.5"^2}}{"9.5"} = (0.3286...)$$
 to find α then $\times 2$
And $\cos AOB = \frac{10^2 + 10^2 - (\sqrt{39})^2}{2 \times 10 \times 10} = \frac{161}{200}$

A1*: Correct and careful work in proceeding to the given answer. Condone an answer with greater accuracy. Condone a solution where the intermediate value has been truncated, provided the trig equation is correct.

E.g.
$$\sin \alpha = \frac{\sqrt{39}}{20} \Rightarrow \alpha = 0.317 \Rightarrow AOB = 2\alpha = 0.635$$

Condone a solution written down from awrt 36.4° (without the need to shown any calculation.) ${\rm E}$

(b)


- **M1:** Attempts to use the formula $s = r\theta$ with r = 10 and $\theta = 2\pi 0.635$ The formula may be embedded. You may see $2\pi 10 + 2\pi \sqrt{40} - 10 \times 0.635$... which is fine for this M1
- M1: Attempts to use a correct method in order to find angle AXB or AXO in circle C_2

Amongst many other methods are $\tan \beta = \frac{"3.12"}{15-9.5}$ and $\cos AXB = \frac{40+40-(\sqrt{39})^2}{2\times\sqrt{40}\times\sqrt{40}} = \frac{41}{80}$ Note that many candidates believe this to be 0.635. This scores M0 dM0 A0

dM1: A full and complete attempt to find the perimeter of the region.

It is dependent upon having scored both M's.

A1: awrt 89.7

(a)

M1: For the key step in attempting to find all lengths in triangle *OAX*, condoning slips

A1: All three lengths correct

M1: Attempts cosine rule to find α then $\times 2$

A1*: Correct and careful work in proceeding to the given answer

.....