Question	Scheme	Marks	AOs
15 (a)	$x^{2} \tan y = 9 \Rightarrow 2x \tan y + x^{2} \sec^{2} y \frac{dy}{dx} = 0$	M1 A1	3.1a 1.1b
	Full method to get $\frac{dy}{dx}$ in terms of x using	M1	1.1b
	$\sec^2 y = 1 + \tan^2 y = 1 + f(x)$		
	$\frac{dy}{dx} = \frac{-2x \times \frac{9}{x^2}}{x^2 \left(1 + \frac{81}{x^4}\right)} = \frac{-18x}{x^4 + 81} $ *	A1*	2.1
		(4)	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x}{x^4 + 81}$		
	$d^2v = -18 \times (x^4 + 81) - (-18x)(4x^3) = 54(x^4 - 27)$		
	$\Rightarrow \frac{d^2 y}{dx^2} = \frac{-18 \times (x^4 + 81) - (-18x)(4x^3)}{(x^4 + 81)^2} = \frac{54(x^4 - 27)}{(x^4 + 81)^2} \text{ o.e.}$	M1 A1	1.1b 1.1b
	States that when $x < \sqrt[4]{27} \implies \frac{d^2 y}{dx^2} < 0$		
	when $x = \sqrt[4]{27} \implies \frac{d^2 y}{dx^2} = 0$	A1	2.4
	AND when $x > \sqrt[4]{27} \implies \frac{d^2 y}{dx^2} > 0$		
	giving a point of inflection when $x = \sqrt[4]{27}$		
		(3)	
		((7 marks)

Notes:

(a)

M1: Attempts to differentiate tan y implicitly. Eg. tan $y \to \sec^2 y \frac{dy}{dx}$ or $\cot y \to -\csc^2 y \frac{dy}{dx}$

You may well see an attempt $\tan y = \frac{9}{x^2} \Rightarrow \sec^2 y \frac{dy}{dx} = \dots$

When a candidate writes $x^2 \tan y = 9 \Rightarrow x = 3 \tan^{-\frac{1}{2}} y$ the mark is scored for $\tan^{-\frac{1}{2}} y \rightarrow ... \tan^{-\frac{3}{2}} y \sec^2 y$

A1: Correct differentiation $2x \tan y + x^2 \sec^2 y \frac{dy}{dx} = 0$

Allow also $\sec^2 y \frac{dy}{dx} = -\frac{18}{x^3}$ or $2x = -9\csc^2 y \frac{dy}{dx}$ amongst others

M1: Full method to get $\frac{dy}{dx}$ in terms of x using $\sec^2 y = 1 + \tan^2 y = 1 + f(x)$

A1*: Proceeds correctly to the given answer of $\frac{dy}{dx} = \frac{-18x}{x^4 + 81}$

(b)

M1: Attempts to differentiate the given expression using the product or quotient rule.

For example look for a correct attempt at $\frac{vu'-uv'}{v^2}$ with $u=-18x, v=x^4+81, u'=\pm 18, v'=...x^3$

If no method is seen or implied award for $\frac{\pm 18 \times (x^4 + 81) \pm 18x(ax^3)}{(x^4 + 81)^2}$

Using the product rule award for $\pm 18\left(x^4 + 81\right)^{-1} \pm 18x\left(x^4 + 81\right)^{-2} \times cx^3$

A1: Correct **simplified** $\frac{d^2 y}{dx^2} = \frac{54(x^4 - 27)}{(x^4 + 81)^2}$ o.e. such as $\frac{d^2 y}{dx^2} = \frac{54x^4 - 1458}{(x^4 + 81)^2}$

A1: Correct explanation with a minimal conclusion and correct second derivative.

Alternatively score for showing that when a correct (unsimplified) $\frac{d^2y}{dx^2} = 0 \Rightarrow x^4 = 27 \Rightarrow x = \sqrt[4]{27}$

Or for substituting $x = \sqrt[4]{27}$ into an unsimplified but correct $\frac{d^2y}{dx^2}$ and showing that it is 0

See scheme.

It can be also be argued from $x^4 < 27$, $x^4 = 27$ and $x^4 > 27$ provided the conclusion states that the point of inflection is at $x = \sqrt[4]{27}$

Alternatively substitutes values of x either side of $\sqrt[4]{27}$ and at $\sqrt[4]{27}$, into $\frac{d^2y}{dx^2}$, finds all three values and makes a minimal conclusion.

A different method involves finding $\frac{d^3y}{dx^3}$ and showing that $\frac{d^3y}{dx^3} \neq 0$ and $\frac{d^2y}{dx^2} = 0$ when $x = \sqrt[4]{27}$

FYI
$$\frac{d^3y}{dx^3} = \frac{23328x^3}{(x^4 + 81)^3} = 0.219$$
 when $x = \sqrt[4]{27}$

Alternative part (a) using arctan

M1: Sets $y = \arctan \frac{9}{x^2} \rightarrow \frac{dy}{dx} = \frac{1}{1 + \left(\frac{9}{x^2}\right)^2} \times \dots$ where ... could be 1

A2:
$$y = \arctan \frac{9}{x^2} \to \frac{dy}{dx} = \frac{1}{1 + \left(\frac{9}{x^2}\right)^2} \times -\frac{18}{x^3}$$

A1*: $\frac{dy}{dx} = \frac{1}{1 + \frac{81}{4}} \times -\frac{18}{x^3} = \frac{-18x}{x^4 + 1}$ showing correct intermediate step and no errors.