Question	Scheme	Marks	AOs
16	Sets up the contradiction and factorises:		
	There are positive integers p and q such that	M1	2.1
	(2p+q)(2p-q)=25		
	If true then $2p+q=25$ $2p-q=1$ $2p+q=5$ $2p-q=5$	M1	2.2a
	Award for deducing either of the above statements		
	Solutions are $p = 6.5, q = 12$ or $p = 2.5, q = 0$ Award for one of these	A1	1.1b
	This is a contradiction as there are no integer solutions hence there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1
		(4)	
		1	(4 marks)
Notes:			

M1: For the key step in setting up the contradiction and factorising

M1: For deducing that for *p* and *q* to be integers then either 2p+q=252p-q=1 or 2p+q=52p-q=5 must be true.

Award for deducing either of the above statements.

You can ignore any reference to 2p+q=12p-q=25 as this could not occur for positive p and q.

A1: For correctly solving one of the given statements,

For $\frac{2p+q=25}{2p-q=1}$ candidates only really need to proceed as far as p = 6.5 to show the contradiction.

For $\frac{2p+q=5}{2p-q=5}$ candidates only really need to find either p or q to show the contradiction.

Alt for 2p+q=52p-q=5 candidates could state that $2p+q \neq 2p-q$ if p,q are positive integers.

A1: For a complete and rigorous argument with both possibilities and a correct conclusion.

Question	Scheme	Marks	AOs
16 Alt 1	Sets up the contradiction, attempts to make q^2 or $4p^2$ the subject and states that either $4p^2$ is even(*), or that q^2 (or q) is odd (**) Either There are positive integers p and q such that $4p^2 - q^2 = 25 \Rightarrow q^2 = 4p^2 - 25$ with * or ** Or There are positive integers p and q such that $4p^2 - q^2 = 25 \Rightarrow 4p^2 = q^2 + 25$ with * or **	M1	2.1
	Sets $q = 2n \pm 1$ and expands $(2n \pm 1)^2 = 4p^2 - 25$	M1	2.2a
	Proceeds to an expression such as $4p^{2} = 4n^{2} + 4n + 26 = 4(n^{2} + n + 6) + 2$ $4p^{2} = 4n^{2} + 4n + 26 = 4(n^{2} + n) + \frac{13}{2}$ $p^{2} = n^{2} + n + \frac{13}{2}$	A1	1.1b
	States This is a contradiction as $4p^2$ must be a multiple of 4 Or p^2 must be an integer And concludes there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1
		(4)	

Alt 2

An approach using odd and even numbers is unlikely to score marks.

To make this consistent with the Alt method, score

M1: Set up the contradiction and start to consider one of the cases below where q is odd, $m \neq n$.

Solutions using the same variable will score no marks.

M1: Set up the contradiction and start to consider BOTH cases below where q is odd, $m \neq n$.

No requirement for evens

- A1: Correct work and deduction for one of the two scenarios where q is odd
- A1: Correct work and deductions for both scenarios where q is odd with a final conclusion

Options	Example of Calculation	Deduction
p (even) q (odd)	$4p^{2} - q^{2} = 4 \times (2m)^{2} - (2n+1)^{2} = 16m^{2} - 4n^{2} - 4n - 1$	One less than a multiple of 4 so cannot equal 25
<i>p</i> (odd) <i>q</i> (odd)	$4p^{2} - q^{2} = 4 \times (2m+1)^{2} - (2n+1)^{2} = 16m^{2} + 16m - 4n^{2} - 4n + 3$	Three more than a multiple of 4 so cannot equal 25