4(a)	$f'(x) = 2x + \frac{4x - 4}{2x^2 - 4x + 5}$ $2x + \frac{4x - 4}{2x^2 - 4x + 5} = 0 \Longrightarrow 2x(2x^2 - 4x + 5) + 4x - 4 = 0$	M1 A1 dM1	1.1b 1.1b
	$2x + \frac{4x - 4}{2x^2 - 4x + 5} = 0 \Longrightarrow 2x(2x^2 - 4x + 5) + 4x - 4 = 0$	dM1	
			1.1b
	$2x^3 - 4x^2 + 7x - 2 = 0*$	A1*	2.1
		(4)	
(b) ((i) $x_2 = \frac{1}{7} \left(2 + 4 \left(0.3 \right)^2 - 2 \left(0.3 \right)^3 \right)$	M1	1.1b
	$x_2 = 0.3294$	A1	1.1b
((ii) $x_4 = 0.3398$	A1	1.1b
		(3)	
(c)	$h(x) = 2x^3 - 4x^2 + 7x - 2$ h(0.3415) = 0.00366 h(0.3405) = -0.00130	M1	3.1a
	States: • there is a change of sign • f'(x) is continuous	A1	2.4
-	• $\alpha = 0.341$ to 3dp	(2)	
		(2)	marke)
(9 marks) Notes			

(a)

M1: Differentiates $\ln(2x^2 - 4x + 5)$ to obtain $\frac{g(x)}{2x^2 - 4x + 5}$ where g(x) could be 1

A1: For $f'(x) = 2x + \frac{4x-4}{2x^2-4x+5}$

dM1: Sets their $f'(x) = ax + \frac{g(x)}{2x^2 - 4x + 5} = 0$ and uses "**correct**" algebra, condoning slips, to obtain a

cubic equation. E.g Look for $ax(2x^2 - 4x + 5) \pm g(x) = 0$ o.e., condoning slips, followed by some attempt to simplify

A1*: Achieves $2x^3 - 4x^2 + 7x - 2 = 0$ with no errors. (The dM1 mark must have been awarded) (b)(i)

M1: Attempts to use the iterative formula with $x_1 = 0.3$. If no method is shown award for $x_2 = awrt 0.33$

A1:
$$x_2 = \text{awrt } 0.3294 \text{ Note that } \frac{1153}{3500} \text{ is correct}$$

Condone an incorrect suffix if it is clear that a correct value has been found (b)(ii)

A1: $x_4 = awrt \ 0.3398$ Condone an incorrect suffix if it is clear that a correct value has been found (c)

M1: Attempts to substitute x = 0.3415 and x = 0.3405 into a suitable function and gets one value correct (rounded or truncated to 1 sf). It is allowable to use a tighter interval that contains the root 0.340762654

Examples of suitable functions are $2x^3 - 4x^2 + 7x - 2$, $x - \frac{1}{7}(4x^2 - 2x^3 + 2)$ and f'(x) as this has been

found in part (a) with f '(0.3405)= - 0.00067.., f '(0.3415)= (+) 0.0018

There must be sufficient evidence for the function, which would be for example, a statement such as $h(x) = 2x^3 - 4x^2 + 7x - 2$ or sight of embedded values that imply the function, not just a value or values

even if both are correct. Condone h(x) being mislabelled as f

$$h(0.3415) = 2 \times 0.3415^3 - 4 \times 0.3415^2 + 7 \times 0.3415 - 2$$

A1: Requires

- both calculations correct (rounded or truncated to 1sf)
- a statement that there is a change in sign and that the function is continuous
- a minimal conclusion e.g. \checkmark , proven, $\alpha = 0.341$, root