Question	Scheme	Marks	AOs
5(a)	$u_{3}=£ 20000 \times 1.08^{2}=(£) 23328^{*}$	B1*	1.1 b
	(b)	$20000 \times 1.08^{n-1}>65000$	$\mathbf{(1)}$
		$1.08^{n-1}>\frac{13}{4} \Rightarrow n-1>\frac{\ln (3.25)}{\ln (1.08)}$	M 1

(a)

B1*: Uses a correct method to show that the Profit in Year 3 will be $£ 23328$. Condone missing units E.g. $£ 20000 \times 1.08^{2}$ or $£ 20000 \times 108 \% \times 108 \%$

This may be obtained in two steps. E.g $\frac{8}{100} \times 20000=1600$ followed by $\frac{8}{100} \times 21600=1728$ with the calculations $21600+1728=23328$ seen.
Condone calculations seen as 8% of $20000=1600$.
This is a show that question and the method must be seen.
It is not enough to state Year $1=£ 21600$, Year $2=£ 23328$
(b)

M1: Sets up an inequality or an equation that will allow the problem to be solved.
Allow for example N or n for $n-1$. So award for $20000 \times 1.08^{n-1}>65000$, $20000 \times 1.08^{n}=65000$ or $20000 \times(108 \%)^{n} \geqslant 65000$ amongst others.
Condone slips on the 20000 and 65000 but the 1.08 o.e. must be correct
M1: Uses a correct strategy involving logs in an attempt to solve a type of equation or inequality of the form seen above. It cannot be awarded from a sum formula The equation/inequality must contain an index of $n-1, N$, n etc.
Again condone slips on the 20000 and 65000 but additionally condone an error on the 1.08 , which may appear as 1.8 for example
E.g. $20000 \times 1.08^{n}=65000 \Rightarrow n \log 1.08=\log \frac{65000}{20000} \Rightarrow n=\ldots$
E.g. $2000 \times 1.8^{n}=65000 \Rightarrow \log 2000+n \log 1.8=\log 65000 \Rightarrow n=\ldots$

A1: Interprets their decimal value and gives the correct year number. Year 17

The demand of the question dictates that solutions relying entirely on calculator technology are not acceptable, BUT allow a solution that appreciates a correct term formula or the entire set of calculations where you may see the numbers as part of a larger list E.g. Uses, or implies the use of, an acceptable calculation and finds value(s) for M1: $(n=16) \Rightarrow P=20000 \times 1.08^{15}=$ awrt 63400 or $(n=17) \Rightarrow P=20000 \times 1.08^{16}=\operatorname{awrt} 68500$ M1: $(n=16) \Rightarrow P=20000 \times 1.08^{15}=$ awrt 63400 and $(n=17) \Rightarrow P=20000 \times 1.08^{16}=\operatorname{awrt} 68500$
A1: 17 years following correct method and both M's
(c)

M1: Attempts to use the model with a correct sum formula to find the total profit for the 20 years. You may see an attempt to find the sum of 20 terms via a list. This is acceptable provided there are 20 terms with $u_{n}=1.08 \times u_{n-1}$ seen at least 4 times and the sum attempted.
Condone a slip on the 20000 (e.g appearing as 2000) and/or a slip on the 1.08 with it being the same " r " as in (b) . Do not condone 20 appearing as 19 for instance
A1: awrt £915 000 but condone missing unit

The demand of the question dictates that all stages of working should be seen. An answer without working scores M0 A0

