Question	Scheme	Marks	AOs
5(a)	$u_3 = \pounds 20000 \times 1.08^2 = (\pounds)23328\ast$	B1*	1.1b
		(1)	
(b)	$20000 \times 1.08^{n-1} > 65000$	M1	1.1b
	$1.08^{n-1} > \frac{13}{4} \Longrightarrow n-1 > \frac{\ln(3.25)}{\ln(1.08)}$		
	or e.g. $1.08^{n-1} > \frac{13}{4} \Longrightarrow n-1 > \log_{1.08}\left(\frac{13}{4}\right)$	M1	3.1b
	Year 17	A1	3.2a
		(3)	
(c)	$S_{20} = \frac{20000\left(1 - 1.08^{20}\right)}{1 - 1.08}$	M1	3.4
	Awrt (£) 915 000	A1	1.1b
		(2)	
•		(6	marks
	Notes		

(a)

B1*: Uses a correct method to show that the Profit in Year 3 will be £23 328. Condone missing units E.g. £20000×1.08² or £20000×108%×108%

This may be obtained in two steps. E.g $\frac{8}{100} \times 20000 = 1600$ followed by $\frac{8}{100} \times 21600 = 1728$ with the calculations 21600 + 1728 = 23328 seen. Condone calculations seen as 8% of 20000 = 1600. This is a show that question and the method must be seen. It is not enough to state Year 1 = £21 600, Year 2 = £ 23 328 (b)

M1: Sets up an inequality or an equation that will allow the problem to be solved.

Allow for example *N* or *n* for n - 1. So award for $20000 \times 1.08^{n-1} > 65000$,

 $20000 \times 1.08^{n} = 65000 \text{ or } 20000 \times (108\%)^{n} \ge 65000 \text{ amongst others.}$

Condone slips on the 20 000 and 65 000 but the 1.08 o.e. must be correct

M1: Uses a correct strategy involving logs in an attempt to solve a type of equation or inequality of the form seen above. It cannot be awarded from a sum formula

The equation/inequality must contain an index of n - 1, N, n etc.

Again condone **slips** on the 20 000 and 65 000 but additionally condone an error on the 1.08, which may appear as 1.8 for example

E.g. $20\,000 \times 1.08^n = 65\,000 \Rightarrow n \log 1.08 = \log \frac{65000}{20000} \Rightarrow n = \dots$

E.g. $2000 \times 1.8^n = 65000 \Longrightarrow \log 2000 + n \log 1.8 = \log 65000 \Longrightarrow n = \dots$

A1: Interprets their decimal value and gives the correct year number. Year 17

The demand of the question dictates that solutions relying entirely on calculator technology are not acceptable, BUT allow a solution that appreciates **a correct term** formula or the entire set of calculations where you may see the numbers as part of a larger list E.g. Uses, or implies the use of, an acceptable calculation and finds value(s)

for M1: $(n=16) \Rightarrow P = 20000 \times 1.08^{15} = \text{awrt } 63400 \text{ or } (n=17) \Rightarrow P = 20000 \times 1.08^{16} = \text{awrt } 68500$

M1: $(n=16) \Rightarrow P = 20000 \times 1.08^{15} = \text{awrt } 63400 \text{ and } (n=17) \Rightarrow P = 20000 \times 1.08^{16} = \text{awrt } 68500$

A1: 17 years following correct method and both M's

(c)

M1: Attempts to use the model with a **correct** sum formula to find the total profit for the 20 years. You may see an attempt to find the sum of 20 terms via a list. This is acceptable provided there are 20 terms with $u_n = 1.08 \times u_{n-1}$ seen at least 4 times and the sum attempted.

Condone a slip on the 20 000 (e.g appearing as 2 000) and/or a slip on the 1.08 with it being the same "r" as in (b). Do not condone 20 appearing as 19 for instance

A1: awrt £915 000 but condone missing unit

The demand of the question dictates that all stages of working should be seen. An answer without working scores M0 A0