Question	Scheme	Marks	AOs	
7(a)(i)	$(x-5)^{2} + (y+2)^{2} = \dots$	M1	1.1b	
	(5, -2)	Al	1.1b	
(ii)	$r = \sqrt{"5"^2 + "-2"^2 - 11}$	M1	1.1b	
	$r = 3\sqrt{2}$	A1	1.1b	
		(4)		
(b)	$y = 3x + k \Longrightarrow x^{2} + (3x + k)^{2} - 10x + 4(3x + k) + 11 = 0$	M1	2.1	
	$\Rightarrow x^{2} + 9x^{2} + 6kx + k^{2} - 10x + 12x + 4k + 11 = 0$			
	$\Rightarrow 10x^2 + (6k+2)x + k^2 + 4k + 11 = 0$	A1	1.1b	
	$b^{2} - 4ac = 0 \Longrightarrow (6k+2)^{2} - 4 \times 10 \times (k^{2} + 4k + 11) = 0$	M1	3.1a	
	$\Rightarrow 4k^2 + 136k + 436 = 0 \Rightarrow k = \dots$	M1	1.1b	
	$k = -17 \pm 6\sqrt{5}$	Al	2.2a	
		(5)		
(9 marks)				
Notes				

(a)(i)

M1: Attempts to complete the square on by halving both x and y terms.

Award for sight of $(x \pm 5)^2$, $(y \pm 2)^2 = ...$ This mark can be implied by a centre of $(\pm 5, \pm 2)$. A1: Correct coordinates. (Allow x = 5, y = -2) (a)(ii)

M1: Correct strategy for the radius or radius². For example award for $r = \sqrt{\pm 5^{2} + \pm 2^{2} - 11}$ or an attempt such as $(x-a)^{2} - a^{2} + (y-b)^{2} - b^{2} + 11 = 0 \Rightarrow (x-a)^{2} + (y-b)^{2} = k \Rightarrow r^{2} = k$

A1: $r = 3\sqrt{2}$. Do not accept for the A1 either $r = \pm 3\sqrt{2}$ or $\sqrt{18}$

The A1 can be awarded following sign slips on (5, -2) so following $r^2 = "\pm 5"^2 + "\pm 2"^2 - 11$

- (b) Main method seen
- M1: Substitutes y = 3x + k into the given equation (or their factorised version) and makes progress by attempting to expand the brackets. Condone lack of = 0
- A1: Correct 3 term quadratic equation.

The terms must be collected but this can be implied by correct a, b and c

- M1: Recognises the requirement to use $b^2 4ac = 0$ (or equivalent) where both b and c are expressions in k. It is dependent upon having attempted to substitute y = 3x + k into the given equation
- M1: Solves 3TQ in k. See General Principles.

The 3TQ in k must have been found as a result of attempt at $b^2 - 4ac \dots 0$

A1: Correct simplified values

Look carefully at the method used. It is possible to attempt this using gradients

(b) Alt 1	$x^{2} + y^{2} - 10x + 4y + 11 = 0 \Longrightarrow 2x + 2y \frac{dy}{dx} - 10 + 4\frac{dy}{dx} = 0$	M1 A1	2.1 1.1b
	Sets $\frac{dy}{dx} = 3 \implies x + 3y + 1 = 0$ and combines with equation for C	Ml	3 19
	$\Rightarrow 5x^2 - 50x + 44 = 0 \text{or} 5y^2 + 20y + 11 = 0$ $\Rightarrow x = \dots \text{or} y = \dots$	NII	5.1a
		1	

$$x = \frac{25 \pm 9\sqrt{5}}{5}, \ y = \frac{-10 \pm 3\sqrt{5}}{5}, \ k = y - 3x \Longrightarrow k = \dots \qquad M1 \qquad 1.1b$$
$$k = -17 \pm 6\sqrt{5} \qquad A1 \qquad 2.2a$$

M1: Differentiates implicitly condoning slips but must have two $\frac{dy}{dx}$'s coming from correct terms

A1: Correct differentiation.

M1: Sets $\frac{dy}{dx} = 3$, makes y or x the subject, substitutes back into C and attempts to solve the resulting quadratic in x or y

quadratic in *x* or *y*.

- M1: Uses at least one pair of coordinates and l to find at least one value for k. It is dependent upon having attempted both M's
- A1: Correct simplified values

(b) Alt 2

$$\begin{array}{c|c}
x^{2} + y^{2} - 10x + 4y + 11 = 0 \Rightarrow 2x + 2y \frac{dy}{dx} - 10 + 4 \frac{dy}{dx} = 0 & \text{M1} & 2.1 \\ A1 & 1.1b & \text{M1} & 1.1b \\ \hline
\text{Sets } \frac{dy}{dx} = 3 \Rightarrow x + 3y + 1 = 0 \text{ and combines with equation for } l & \text{M1} & 3.1a \\ y = 3x + k, x + 3y = 1 & \text{M1} & 3.1a \\ \Rightarrow x = \dots & \text{and} & y = \dots & \text{in terms of } k & \text{M1} & 1.1b \\ \hline
x = \frac{-3k - 1}{10}, & y = \frac{k - 3}{10}, & x^{2} + y^{2} - 10x + 4y + 11 = 0 \Rightarrow k = \dots & \text{M1} & 1.1b \\ \hline
k = -17 \pm 6\sqrt{5} & \text{A1} & 2.2a \\ \hline
\end{array}$$

Very similar except it uses equation for *l* instead of *C* in mark 3

M1 A1: Correct differentiation (See alt 1)

M1: Sets $\frac{dy}{dx} = 3$, makes y or x the subject, substitutes back into l to obtain x and y in terms of k

M1: Substitutes for x and y into C and solves resulting 3TQ in k

A1: Correct simplified values

(b) Alt 3

$$y = 3x + k \Rightarrow m = 3 \Rightarrow m_r = -\frac{1}{3}$$
M1

$$y + 2 = -\frac{1}{3}(x - 5)$$
A1

$$(x - 5)^2 + (y + 2)^2 = 18, \quad y + 2 = -\frac{1}{3}(x - 5)$$
M1

$$\Rightarrow \frac{10}{9}(x - 5)^2 = 18 \Rightarrow x = ... \text{ or } \Rightarrow 10(y + 2)^2 = 18 \Rightarrow y = ...$$
M1

$$x = \frac{25 \pm 9\sqrt{5}}{5}, \quad y = \frac{-10 \pm 3\sqrt{5}}{5}, \quad k = y - 3x \Rightarrow k = ...$$
M1

$$k = -17 \pm 6\sqrt{5}$$
A1

M1: Applies negative reciprocal rule to obtain gradient of radius

A1: Correct equation of radial line passing through the centre of C

M1: Solves simultaneously to find x or y

