Question	Scheme	Marks	AOs
8 (a)	A = 1000	B1	3.4
	$2000 = 1000e^{5k}$ or $e^{5k} = 2$	M1	1.1b
	$e^{5k} = 2 \Longrightarrow 5k = \ln 2 \Longrightarrow k = \dots$	M1	2.1
	$N = 1000e^{\left(\frac{1}{5}\ln 2\right)t}$ or $N = 1000e^{0.139t}$	A1	3.3
		(4)	
(b)	$\frac{dN}{dt} = 1000 \times \left(\frac{1}{5}\ln 2\right) e^{\left(\frac{1}{5}\ln 2\right)t} \text{ or } \frac{dN}{dt} = 1000 \times 0.139 e^{0.139t}$ $\left(\frac{dN}{dt}\right)_{t=8} = 1000 \times \left(\frac{1}{5}\ln 2\right) e^{8 \times \frac{1}{5}\ln 2} \text{ or } \left(\frac{dN}{dt}\right)_{t=8} = 1000 \times 0.139 e^{0.139\times 8}$	M1	3.1b
	= awrt 420	A1	1.1b
		(2)	
(c)	$500e^{1.4\times\left(\frac{1}{5}\ln 2\right)T} = 1000e^{\left(\frac{1}{5}\ln 2\right)T} \text{ or } 500e^{1.4\times^{\circ}0.139^{\circ}t} = 1000e^{^{\circ}0.139^{\circ}t}$	M1	3.4
	Correct method of getting a linear equation in T E.g. $0.08T \ln 2 = \ln 2$ or $1.4 \times "0.339 "T = \ln 2 + "0.339 "t$	M1	2.1
	T = 12.5 hours	A1	1.1b
		(3)	
(9 marks)			
Notes			

Mark as one complete question. Marks in (a) can be awarded from (b) (a)

B1: Correct value of A for the model. Award if equation for model is of the form $N = 1000e^{-t}$

M1: Uses the model to set up a correct equation in *k*. Award for substituting N = 2000, t = 5 following through on their value for *A*.

M1: Uses correct ln work to solve an equation of the form $ae^{5k} = b$ and obtain a value for k

A1: Correct equation of model. Condone an ambiguous $N = 1000e^{\frac{1}{5}\ln 2t}$ unless followed by something incorrect. Watch for $N = 1000 \times 2^{\frac{1}{5}t}$ which is also correct

(b)

M1: Differentiates αe^{kt} to βe^{kt} and substitutes t = 8 (Condone $\alpha = \beta$ so long as you can see an attempt to differentiate)

A1: For awrt 420 (2sf).

(c)

M1: Uses both models to set up an equation in T using their value for k, but also allow in terms of k M1: Uses correct processing using lns to obtain a linear equation in T (or t)

A1: Awrt 12.5

Answers to (b) and (c) appearing without working (i.e. from a calculator).

It is important that candidates show sufficient working to make their methods clear.

(b) If candidate has for example
$$N = 1000e^{0.139t}$$
, and then writes at $t = 8 \frac{dN}{dt} = awrt 420$ award both

marks. Just the answer from a correct model equation score SC 1,0.

(c) The first M1 should be seen E.g $500e^{14\times"0.139"t} = 1000e^{"0.139"t}$ If the answer T = 12.5 appears without any further working score SC M1 M1 A0