Question	Scheme	Marks	AOs	
9(a)(i)	$50x^{2} + 38x + 9 \equiv A(5x+2)(1-2x) + B(1-2x) + C(5x+2)^{2}$ $\Rightarrow B = \dots \text{ or } C = \dots$	M1	1.1b	
-	B = 1 and $C = 2$	A1	1.1b	
(a)(ii)	E.g. $x = 0$ $x = 0 \Rightarrow 9 = 2A + B + 4C$ $\Rightarrow 9 = 2A + 1 + 8 \Rightarrow A =$	M1	2.1	
-	$A = 0^*$	A1*	1.1b	
-		(4)		
(b)(i)	$\frac{1}{(5x+2)^2} = (5x+2)^{-2} = 2^{-2} \left(1 + \frac{5}{2}x\right)^{-2}$ or	M1	3.1a	
	$(5x+2)^{-2} = 2^{-2} + \dots$			
	$\left(1+\frac{5}{2}x\right)^{-2} = 1-2\left(\frac{5}{2}x\right) + \frac{-2\left(-2-1\right)}{2!}\left(\frac{5}{2}x\right)^2 + \dots$	— M1	1.1b	
	$2^{-2}\left(1+\frac{5}{2}x\right)^{-2} = \frac{1}{4} - \frac{5}{4}x + \frac{75}{16}x^2 + \dots$	A1	1.1b	
	$\frac{1}{(1-2x)} = (1-2x)^{-1} = 1+2x+\frac{-1(-1-1)}{2!}(2x)^{2}+.$	— M1	1.1b	
	$\frac{1}{\left(5x+2\right)^2} + \frac{2}{1-2x} = \frac{1}{4} - \frac{5}{4}x + \frac{75}{16}x^2 + \dots + 2 + 4x + 8x^2 + \dots$	- dM1	2.1	
	$=\frac{9}{4}+\frac{11}{4}x+\frac{203}{16}x^2+\dots$	A1	1.1b	
(b)(ii)	$ x < \frac{2}{5}$	B1	2.2a	
		(7)		
	(11 mark			
Notes				

(a)(i)

M1: Uses a correct identity and makes progress using an appropriate strategy (e.g. sub $x = \frac{1}{2}$) to find

a value for *B* or *C*. May be implied by one correct value (cover up rule).

A1: Both values correct

(a)(ii)

M1: Uses an appropriate method to establish an equation connecting A with B and/or C and uses their values of B and/or C to find a suitable equation in A.

Amongst many different methods are:

Compare terms in $x^2 \Rightarrow 50 = -10A + 25C$ which would be implied by $50 = -10A + 25 \times "2"$

Compare constant terms or substitute $x = 0 \Longrightarrow 9 = 2A + B + 4C$ implied by $9 = 2A + 1 + 4 \times 2$ A1*: Fully correct proof with no errors.

Note: The second part is a proof so it is important that a suitable proof/show that is seen. Candidates who write down 3 equations followed by three answers (with no working) will score M1 A1 M0 A0

(b)(i)

M1: Applies the key steps of writing $\frac{1}{(5x+2)^2}$ as $(5x+2)^{-2}$ and takes out a factor of 2^{-2} to form an expression of the form $(5x+2)^{-2} = 2^{-2} (1+x)^{-2}$ where * is not 1 or 5

Alternatively uses direct expansion to obtain $2^{-2} + \dots$

M1: Correct attempt at the binomial expansion of $(1 + x)^{-2}$ up to the term in x^{2}

Look for
$$1+(-2)*x+\frac{(-2)(-3)}{2}*x^2$$
 where * is not 5 or 1.

Condone sign slips and lack of *² on term 3.

Alt Look for correct structure for 2nd and 3rd terms by direct expansion. See below

A1: For a fully correct expansion of $(2+5x)^{-2}$ which may be unsimplified. This may have been combined with their '*B*'

A direct expansion would look like $(2+5x)^{-2} = 2^{-2} + (-2)2^{-3} \times 5x + \frac{(-2)(-3)}{2}2^{-4} \times (5x)^{2}$

M1: Correct attempt at the binomial expansion of $(1-2x)^{-1}$

Look for
$$1 + (-1)^* x + \frac{(-1)(-2)}{2} * x^2$$
 where * is not 1

dM1: Fully correct strategy that is dependent on the previous TWO method marks.

There must be some attempt to use their values of B and C

A1: Correct expression or correct values for p, q and r.

(b)(ii)

B1: Correct range. Allow also other forms, for example $-\frac{2}{5} < x < \frac{2}{5}$ or $x \in \left(-\frac{2}{5}, \frac{2}{5}\right)$

Do not allow multiple answers here. The correct answer must be chosen if two answers are offered