Question	Scheme	Marks	AOs
10(a)	$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \frac{1 - \left(1 - 2\sin^2\theta\right) + 2\sin\theta\cos\theta}{1 + \cos 2\theta + \sin 2\theta}$ or $\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \frac{1 - \cos 2\theta + \sin 2\theta}{1 + \left(2\cos^2\theta - 1\right) + 2\sin\theta\cos\theta}$	M1	2.1
	$\frac{1-\cos 2\theta + \sin 2\theta}{1+\cos 2\theta + \sin 2\theta} = \frac{1-(1-2\sin^2\theta) + 2\sin\theta\cos\theta}{1+(2\cos^2\theta - 1) + 2\sin\theta\cos\theta}$	A1	1.1b
	$= \frac{2\sin^2\theta + 2\sin\theta\cos\theta}{2\cos^2\theta + 2\sin\theta\cos\theta} = \frac{2\sin\theta(\sin\theta + \cos\theta)}{2\cos\theta(\cos\theta + \sin\theta)}$	dM1	2.1
	$=\frac{\sin\theta}{\cos\theta}=\tan\theta^*$	A1*	1.1b
		(4)	
(b)	$\frac{1-\cos 4x + \sin 4x}{1+\cos 4x + \sin 4x} = 3\sin 2x \implies \tan 2x = 3\sin 2x \text{o.e}$	M1	3.1a
	$\Rightarrow \sin 2x - 3\sin 2x \cos 2x = 0$ $\Rightarrow \sin 2x (1 - 3\cos 2x) = 0$ $\Rightarrow (\sin 2x = 0,) \cos 2x = \frac{1}{3}$	A1	1.1b
	$x = 90^{\circ}$, awrt 35.3°, awrt 144.7°	A1 A1	1.1b 2.1
		(4)	
			marks)
Notes			

M1: Attempts to use a correct double angle formulae for both $\sin 2\theta$ and $\cos 2\theta$ (seen once).

The application of the formula for $\cos 2\theta$ must be the one that cancels out the "1" So look for $\cos 2\theta = 1 - 2\sin^2\theta$ in the numerator or $\cos 2\theta = 2\cos^2\theta - 1$ in the denominator Note that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ may be used as well as using $\cos^2 \theta + \sin^2 \theta = 1$

A1:
$$\frac{1 - \left(1 - 2\sin^2\theta\right) + 2\sin\theta\cos\theta}{1 + \left(2\cos^2\theta - 1\right) + 2\sin\theta\cos\theta} \text{ or } \frac{2\sin^2\theta + 2\sin\theta\cos\theta}{2\cos^2\theta + 2\sin\theta\cos\theta}$$

dM1: Factorises numerator and denominator in order to demonstrate cancelling of $(\sin\theta + \cos\theta)$ A1*: Fully correct proof with no errors.

You must see an intermediate line of
$$\frac{2\sin\theta(\sin\theta+\cos\theta)}{2\cos\theta(\cos\theta+\sin\theta)}$$
 or $\frac{\sin\theta}{\cos\theta}$ or even $\frac{2\sin\theta}{2\cos\theta}$

Withhold this mark if you see, within the body of the proof,

- notational errors. E.g. $\cos 2\theta = 1 2\sin^2 \cos \theta$ for $\cos^2 \theta$
- mixed variables. E.g. $\cos 2\theta = 2\cos^2 x 1$

(b)

(a)

M1: Makes the connection with part (a) and writes the lhs as
$$\tan 2x$$
. Condone $x \leftrightarrow \theta$ $\tan 2\theta = 3\sin 2\theta$
A1: Obtains $\cos 2x = \frac{1}{3}$ o.e. with $x \leftrightarrow \theta$. You may see $\sin^2 x = \frac{1}{3}$ or $\cos^2 x = \frac{2}{3}$ after use of double

- angle formulae.
- A1: Two "correct" values. Condone accuracy of awrt 90°, 35°, 145° Also condone radian values here. Look for 2 of awrt 0.62, 1.57, 2.53

A1: All correct (allow awrt) and no other values in range. Condone $x \leftrightarrow \theta$ if used consistently

Answers without working in (b): Just answers and no working score 0 marks.

If the first line is written out, i.e. $\tan 2x = 3\sin 2x$ followed by all three correct answers score 1100.