Question	Scheme	Marks	AOs	
14	$y = \frac{x-4}{2+\sqrt{x}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2+\sqrt{x}-(x-4)\frac{1}{2}x^{-\frac{1}{2}}}{\left(2+\sqrt{x}\right)^2}$	M1 A1	2.1 1.1b	
	$=\frac{2+\sqrt{x}-(x-4)\frac{1}{2}x^{-\frac{1}{2}}}{\left(2+\sqrt{x}\right)^2}=\frac{2+\sqrt{x}-\frac{1}{2}\sqrt{x}+2x^{-\frac{1}{2}}}{\left(2+\sqrt{x}\right)^2}=\frac{2\sqrt{x}+\frac{1}{2}x+2}{\sqrt{x}\left(2+\sqrt{x}\right)^2}$	M1	1.1b	
	$=\frac{x+4\sqrt{x}+4}{2\sqrt{x}\left(2+\sqrt{x}\right)^{2}}=\frac{\left(2+\sqrt{x}\right)^{2}}{2\sqrt{x}\left(2+\sqrt{x}\right)^{2}}=\frac{1}{2\sqrt{x}}$	A1	2.1	
		(4)		
(4 marks)				
NI-4				

Notes Notes M1: Attempts to use a correct rule e.g. quotient or product (& chain) rule to achieve the following forms Quotient: $\frac{\alpha(2+\sqrt{x})-\beta(x-4)x^{-\frac{1}{2}}}{(2+\sqrt{x})^2}$ but be tolerant of attempts where the $(2+\sqrt{x})^2$ has been

incorrectly expanded Product:
$$\alpha \left(2 + \sqrt{x}\right)^{-1} + \beta x^{-\frac{1}{2}} \left(x - 4\right) \left(2 + \sqrt{x}\right)^{-2}$$

Alternatively with
$$t = \sqrt{x}$$
, $y = \frac{t^2 - 4}{2 + t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{2t(2 + t) - (t^2 - 4)}{(2 + t)^2} \times \frac{1}{2}x^{-\frac{1}{2}}$ with same rules

A1: Correct derivative in any form. Must be in terms of a single variable (which could be t) M1: Following a correct attempt at differentiation, it is scored for multiplying both numerator and denominator by \sqrt{x} and collecting terms to form a single fraction. It can also be scored from $\frac{uv'-vu'}{2}$

For the $t = \sqrt{x}$, look for an attempt to simplify $\frac{t^2 + 4t + 4}{(2+t)^2} \times \frac{1}{2t}$

A1: Correct expression showing all key steps with no errors or omissions. $\frac{dy}{dx}$ must be seen at least once

Question	Scheme	Marks	AOs	
14	$y = \frac{x-4}{2+\sqrt{x}} \Longrightarrow y = \frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2+\sqrt{x}} = \sqrt{x}-2$	M1 A1	2.1 1.1b	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$	M1 A1	1.1b 2.1	
		(4)	marks)	
(4 marks)				

Notes

M1: Attempts to use difference of two squares. Can also be scored using

$$t = \sqrt{x} \Rightarrow y = \frac{t^2 - 4}{t + 2} \Rightarrow y = \frac{(t + 2)(t - 2)}{t + 2}$$

A1:
$$y = \sqrt{x - 2}$$
 or $y = t - 2$

M1: Attempts to differentiate an expression of the form $y = \sqrt{x} + b$

A1: Correct expression showing all key steps with no errors or omissions. $\frac{dy}{dx}$ must be seen at least once