Question	Scheme	Marks	AOs
15(i)	$n = 1, 2^3 = 8, 3^1 = 3, (8 > 3)$	M1	2.1
	$n = 2, 3^3 = 27, 3^2 = 9, (27 > 9)$		
	$n = 3, 4^3 = 64, 3^3 = 27, (64 > 27)$		
	$n = 4, 5^3 = 125, 3^4 = 81, (125 > 81)$		
	So if $n \leq 4, n \in \mathbb{N}$ then $(n+1)^3 > 3^n$	A1	2.4
		(2)	
(ii)	Begins the proof by negating the statement. "Let <i>m</i> be odd " or "Assume <i>m</i> is not even"	M1	2.4
	Set $m = (2p \pm 1)$ and attempt $m^3 + 5 = (2p \pm 1)^3 + 5 =$	M1	2.1
	$= 8p^3 + 12p^2 + 6p + 6$ AND deduces even	A1	2.2a
	 Completes proof which requires reason and conclusion reason for 8p³ + 12p² + 6p + 6 being even acceptable statement such as "this is a contradiction so if m³ + 5 is odd then m must be even" 	A1	2.4
		(4)	
(6 marks)			
Notes			

(i)

M1: A full and rigorous argument that uses all of n = 1, 2, 3 and 4 in an attempt to prove the given result. Award for attempts at both $(n + 1)^3$ and 3^n for **ALL** values with at least 5 of the 8 values correct. There is no requirement to compare their sizes, for example state that 27 > 9

Extra values, say n = 0, may be ignored

- A1: Completes the proof with no errors and an appropriate/allowable conclusion. This requires
 - all the values for n = 1, 2, 3 and 4 correct. Ignore other values
 - all pairs compared correctly
 - a minimal conclusion. Accept \checkmark or hence proven for example

- (ii)
- M1: Begins the proof by negating the statement. See scheme

This cannot be scored if the candidate attempts m both odd and even

- M1: For the key step in setting $m = 2p \pm 1$ and attempting to expand $(2p \pm 1)^3 + 5$ Award for a 4 term cubic expression.
- A1: Correctly reaches $(2p + 1)^3 + 5 = 8p^3 + 12p^2 + 6p + 6$ and **states** even. Alternatively reaches $(2p - 1)^3 + 5 = 8p^3 - 12p^2 + 6p + 4$ and **states** even.
- A1: A full and complete argument that completes the contradiction proof. See scheme.
 - (1) A reason why the expression $8p^3 + 12p^2 + 6p + 6$ or $8p^3 12p^2 + 6p + 4$ is even Acceptable reasons are

• all terms are even

• sight of a factorised expression E.g. $8p^3 - 12p^2 + 6p + 4 = 2(4p^3 - 6p^2 + 3p + 2)$

(2) Acceptable concluding statement

Acceptable concluding statements are

- "this is a contradiction, so if $m^3 + 5$ is odd then *m* is even"
- "this is contradiction, so proven."
- "So if $m^3 + 5$ is odd them *m* is even"