Question	Scheme	Marks	AOs
2	Sets $f(-2) = 0 \Longrightarrow (-2-4) ((-2)^2 - 3 \times -2 + k) - 42 = 0$	M1	3.1a
	$-6(k+10) = 42 \Longrightarrow k = \dots$	M1	1.1b
	<i>k</i> = -17	A1	1.1b
		(3)	
			(3 marks)
Notes:			

M1: Attempts f(-2) = 0 leading to an equation in k. So $(-2-4)((-2)^2 - 3 \times -2 + k) - 42 = 0$ is fine Condone slips but expect to see a first bracket of (-2-4).

"-42" must not be omitted but could appear as +42 with a sign slip.

There may have been attempts to expand $f(x) = (x-4)(x^2 - 3x + k) - 42$ before attempting to set f(-2) = 0. This is acceptable and condone slips/errors in the expansion, but the 42 must be present. FYI the expanded (and simplified) $f(x) = x^3 - 7x^2 + (12 + k)x - 4k - 42$

M1: Solves a **linear** equation in k as a result of setting $f(\pm 2) = 0$.

The ± 42 must be there at some point when the substitution is made.

Allow minimal evidence here. A linear equation leading to a solution is fine.

If f(x) is expanded then it is dependent upon being a cubic which contains a kx term and a '42'

A1: k = -17 correct answer following correct work but allow recovery from invisible brackets

Answers of k = -17 may appear with very little or no working, perhaps via trial and improvement. If so, then marks can only be allocated if evidence is shown.

E.g.
$$k = -17 \Rightarrow f(x) = (x-4)(x^2 - 3x - 17) - 42$$

 $f(-2) = (-6) \times (-7) - 42 = 0$. Hence (x+2) is a factor.

.....

More difficult alternative methods may be seen

.....

Alt I : You may see attempts via division / inspection

$$\frac{x^2 - 9x + (k+30)}{x+2 x^3 - 7x^2 + (12+k)x - 4k - 42}$$
 Then sets remainder $-6k - 102 = 0 \Longrightarrow k = -17$

-6k - 102

M1: For dividing their cubic by (x+2) which has both an *x* and a constant coefficient in *k*, leading to a quadratic quotient and a linear remainder in *k* which is then set = 0

M1: Solves a equation resulting from setting a linear remainder in k equal to 0. It is dependent on the first M via this route

A1: Completely correct with k = -17

.....

Alt II: You may also see a grid or an attempt at factorisation via inspection

OR
$$x^{3} - 7x^{2} + (12+k)x - 4k - 42 \equiv (x+2)(x^{2} - 9x - 2k - 21)$$

which should be followed by equating the x terms to form an equation in k

$$12 + k = -18 - 2k - 21 \Longrightarrow 3k = -51 \Longrightarrow k = -17$$

OR $x^3 - 7x^2 + (12 + k)x - 4k - 42 \equiv (x + 2)(x^2 - 9x + k + 30)$

which should be followed by equating the constant terms to form an equation in k

$$-4k - 42 = 2(k+30) \Longrightarrow 6k = -102 \Longrightarrow k = -17$$

The above are examples. There may be other correct attempts so look at what is done.

M1: For an attempt at factorising E.g. $x^3 - 7x^2 + (12+k)x - 4k - 42 \equiv (x+2)(x^2 + bx + c)$ and attempting to set up three equations in *b*, *c* and *k*. E.g. 2+b=-7, 2b+c=12+k, 2c=-4k-42

The expanded f(x) must be a cubic which contains both a kx term and a '42'

- M1: Solves the equations set up from an allowable equation to find k. It is dependent via this route.
- A1: Completely correct with k = -17

.....