Question	Scheme	Marks	AOs
4 (a)	$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \int_{2.1}^{6.3} \frac{2}{x} \mathrm{d}x$	B1	1.2
		(1)	
(b)	$= \left[2\ln x\right]_{21}^{63} = 2\ln 6.3 - 2\ln 2.1$	M1	1.1b
	$= \ln 9$ CSO	A1	1.1b
		(2)	
			(3 marks)
Notes:			

Mark (a) and (b) as one

(a)

B1: States that $\int_{2.1}^{6.3} \frac{2}{x} dx$ or equivalent such as $2 \int_{2.1}^{6.3} x^{-1} dx$ but must include the limits and the dx. Condone $dx \leftrightarrow \delta x$ as it is very difficult to tell one from another sometimes (b) M1: Know that $\int \frac{1}{x} dx = \ln x$ and attempts to apply the limits (either way around) Condone $\int \frac{2}{x} dx = p \ln x$ (including p = 1) or $\int \frac{2}{x} dx = p \ln qx$ as long as the limits are applied. Also be aware that $\int \frac{2}{x} dx = \ln x^2$, $\int \frac{2}{x} dx = 2\ln |x| + c$ and $\int \frac{2}{x} dx = 2\ln cx$ o.e. are also correct $[p \ln x]_{21}^{63} = p \ln 6.3 - p \ln 2.1$ is sufficient evidence to award this mark A1: CSO ln 9. Also answer $= \ln 3^2$ so k = 9 is fine. Condone $\ln |9|$ The method mark must have been awarded. Do not accept answers such as $\ln \frac{39.69}{4.41}$ Note that solutions appearing from "rounded" decimal work when taking lns should not score the final mark. It is a "show that" question

E.g.
$$[2 \ln x]_{21}^{63} = 2 \ln 6.3 - 2 \ln 2.1 = 2.197 = \ln k \implies k = e^{2197} = 8.998 = 9$$