Question	Scheme	Marks	AOs
6 (a)	2 < <i>x</i> < 6	B1	1.1b
		(1)	
(b)	States either $k > 8$ or $k < 0$	M1	3.1a
	States e.g. $\{k:k > 8\} \cup \{k:k < 0\}$	A1	2.5
		(2)	
(c)	Please see notes for alternatives		
	States $y = ax(x-6)^2$ or $f(x) = ax(x-6)^2$	M1	1.1b
	Substitutes (2,8) into $y = ax(x-6)^2$ and attempts to find <i>a</i>	dM1	3.1a
	$y = \frac{1}{4}x(x-6)^2$ or $f(x) = \frac{1}{4}x(x-6)^2$ o.e	A1	2.1
		(3)	
		(6 marks)	

the answer space, the one in the answer space takes precedence

(a)

B1: Deduces 2 < x < 6 o.e. such as x > 2, x < 6 x > 2 and x < 6 $\{x : x > 2\} \cap \{x : x < 6\}$ $x \in (2, 6)$

Condone attempts in which set notation is incorrectly attempted but correct values can be seen

or implied E.g. $\{x > 2\} \cap \{x < 6\} \{x > 2, x < 6\}$. Allow just the open interval (2, 6)

Do not allow for incorrect inequalities such as e.g. x > 2 or x < 6, $\{x : x > 2\} \cup \{x : x < 6\}$ $x \in [2, 6]$

(b)

M1: Establishes a correct method by finding one of the (correct) inequalities States either k > 8 (condone $k \ge 8$) or k < 0 (condone $k \le 0$) Condone for this mark $y \leftrightarrow k$ or $f(x) \leftrightarrow k$ and 8 < k < 0

A1: Fully correct solution in the form $\{k:k>8\} \cup \{k:k<0\}$ or $\{k|k>8\} \cup \{k|k<0\}$ either way around but condone $\{k<0\} \cup \{k>8\}$, $\{k:k<0\cup k>8\}$, $\{k<0\cup k>8\}$. It is not necessary to mention \mathbb{R} , e.g. $\{k:k\in\mathbb{R}, k>8\} \cup \{k:k\in\mathbb{R}, k<0\}$ Look for $\{\}$ and \cup

Do not allow solutions not in set notation such as k < 0 or k > 8.

- (c)
- M1: Realises that the equation of *C* is of the form $y = ax(x-6)^2$. Condone with a = 1 for this mark. So award for sight of $ax(x-6)^2$ even with a = 1

dM1: Substitutes (2,8) into the form $y = ax(x-6)^2$ and attempts to find the value for *a*. It is dependent upon having an equation, which the (y = ...) may be implied, of the correct form.

A1: Uses all of the information to form a correct **equation** for $C = y = \frac{1}{4}x(x-6)^2$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{1}{4}x(x-6)^2$ but not $C = \frac{1}{4}x(x-6)^2$.

Allow this to be written down for all 3 marks

Alternative I part (c):

Using the form $y = ax^3 + bx^2 + cx$ and setting up then solving simultaneous equations. There are various versions of this but can be marked similarly

- M1: Realises that the equation of *C* is of the form $y = ax^3 + bx^2 + cx$ and forms two equations in *a*, *b* and *c*. Condone with a = 1 for this mark. Note that the form $y = ax^3 + bx^2 + cx + d$ is M0 until *d* is set equal to 0. There are four equations that could be formed, only two are necessary for this mark. Condone slips Using $(6, 0) \implies 216a + 36b + 6c = 0$ Using $(2, 8) \implies 8a + 4b + 2c = 8$ Using $\frac{dy}{dx} = 0$ at $x = 2 \implies 12a + 4b + c = 0$ Using $\frac{dy}{dx} = 0$ at $x = 6 \implies 108a + 12b + c = 0$
- dM1: Forms and solves three different equations, one of which must be using (2, 8) to find values for *a*, *b* and *c*. A calculator can be used to solve the equations
- A1: Uses all of the information to form a correct equation for $C = y = \frac{1}{4}x^3 3x^2 + 9x$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{1}{4}x^3 - 3x^2 + 9x$

.....

Alternative II part (c) Using the gradient and integrating

M1: Realises that the gradient of *C* is zero at 2 and 6 so sets f'(x) = k(x-2)(x-6) oe **and** attempts to integrate. Condone with k = 1

dM1: Substitutes x = 2, y = 8 into $f(x) = k(...x^3 + ...x + ...)$ and finds a value for k

A1: Uses all of the information to form a correct equation for C $y = \frac{3}{4} \left(\frac{1}{3}x^3 - 4x^2 + 12x \right)$ o.e.

ISW after a correct answer. Condone $f(x) = \frac{3}{4} \left(\frac{1}{3}x^3 - 4x^2 + 12x \right)$

.....