Question	Scheme	Marks	AOs
7 (i)	For setting up the contradiction: There exists integers p and q such that pq is even and both p and q are odd	B1	2.5
	For example, sets $p = 2m+1$ and $q = 2n+1$ and then attempts $pq = (2m+1)(2n+1) =$	M1	1.1b
	Obtains $pq = (2m+1)(2n+1) = 4mn + 2m + 2n + 1$ = $2(2mn + m + n) + 1$ States that this is odd, giving a contradiction so " if pq is even, then at least one of p and q is even" *	A1*	2.1
		(3)	
(ii)	$(x+y)^2 < 9x^2 + y^2 \Longrightarrow 2xy < 8x^2$	M1	2.2a
	States that as $x < 0 \Rightarrow 2y > 8x$ $\Rightarrow y > 4x^{*}$	A1*	2.1
		(2)	
	1	(5	marks)
Notes:			

(i)

- B1: For using the "correct"/ allowable language in setting up the contradiction. Expect to see a minimum of
 - "assume" or "let" or "there is " or other similar words
 - "pq is even" and "p and q are (both) odd"

M1: Uses a correct algebraic form for p and q and attempting to multiply.

Allow any correct form so p = 2n+1 and q = 2m+3 would be fine to use

Different variables must be used for *p* and *q*, so p = 2n+1 and q = 2n-1 would be M0

A1*: Full argument .

This requires (1) a correct calculation for their pq

(2) a correct reason and conclusion that it is odd

E.g. (2m+1)(2n+1) = 4mn + 2m + 2n + 1 = 2(2mn + m + n) + 1 = odd

E.g. (2m-1)(2n+1) = 4mn + 2m - 2n - 1 = even + even - even - 1 = odd

and (3) a minimal statement implying that they have proven what was required which could be QED, proven etc

Note that B0 M1 A1 is possible

(ii)

- M1: For multiplying out and cancelling terms before proceeding to a correct intermediate line such as $2xy < 8x^2$ o.e. such as 2x(4x y) > 0
- A1*: Full and rigorous proof with reason shown as to why inequality reverses. The point at which it reverses must be correct and a correct reason given

See scheme

Alt:
$$2xy < 8x^2 \Rightarrow xy - 4x^2 < 0 \Rightarrow x(y - 4x) < 0$$

as $x < 0$, $(y - 4x) > 0 \Rightarrow y > 4x$ scores M1 A1

So, the following should be scored M1 A0 as line 3 is incorrect

$$2xy - 8x^{2} < 0$$

$$\Rightarrow 2xy < 8x^{2}$$

$$\Rightarrow y < 4x$$

$$\Rightarrow y > 4x \text{ as } x < 0$$

There should be no incorrect lines in their proof