Question	Scheme	Marks	AOs
13 (i)	States that $S = a + (a + d) + \dots + (a + (n - 1)d)$	B1	1.1a
	S = a + . (a+d) + (a+(n-1)d) S = (a+(n-1)d) + (a+(n-2)d) ++a	M1	3.1a
	Reaches $2S = n \times (2a + (n-1)d)$ And so proves that $S = \frac{n}{2} [2a + (n-1)d]$ *	A1*	2.1
		(3)	
(ii)	(a) $S = 10 + 9.20 + 8.40 + \dots$		
	$64 = \frac{n}{2} (20 - 0.8 (n - 1))$ o.e	M1	3.1b
	$128 = 20n - 0.8n^{2} + 0.8n$ $0.8n^{2} - 20.8n + 128 = 0$ $n^{2} - 26n + 160 = 0 *$	A1*	2.1
		(2)	
	(b) $n = 10,16$	B1	1.1b
		(1)	
	 (c) 10 weeks with a minimal correct reason. E.g. He has saved up the amount by 10 weeks so he would not save for another 6 weeks You would choose the smaller number He starts saving negative amounts (in week 14) so 16 does not make sense 	B1	2.3
		(1)	
			(7 marks)
Notes:			

(i)

B1: Correctly writes down an expression for the key terms S or S_n including S =or $S_n =$

Allow a minimum of 3 correct terms including the first and last terms, and no incorrect terms.

Score for S or $S_n = a + (a+d) + \dots + (a+(n-1)d)$ with + signs, not commas

If the series contains extra terms that should not be there E.g

$$S = a + (a + d) + \dots (a + nd) + (a + (n-1)d)$$
 score B0

M1: For the key step in reversing the terms and adding the two series. Look for a minimum of two terms, including *a* and a+(n-1)d, the series reversed with evidence of adding, for example 2S = Condone the extra incorrect terms (see above) appearing. Can be scored when terms are separated by commas

A1*: Shows correct work (no errors) with all steps shown leading to given answer. There should be no incorrect terms. A minimum of 3 terms should be shown in each sum The solution below is a variation of this.

 $S = a + (a + d) + \dots + l$ $S = l + (l - d) + \dots + a$ 2S = n(a + l) $S = \frac{n}{2}(a + l) = \frac{n}{2}(a + a + (n - 1)d) = \frac{n}{2}(2a + (n - 1)d)$ B1 and A1 are not scored until the last line, M scored on line 3

The following scores B1 M0 A0 as the terms in the second sum are not reversed

SC in (a) Scores B1 M0 A0.

They use $0+1+2+...+(n-1)=\frac{n(n-1)}{2}$ which relies on the quoted proof.

(ii) (a)

M1: Uses the information given to set up a correct equation in *n*.

The values of S, a and d need to be correct and used within a correct formula

Possible ways to score this include unsimplified versions $64 = \frac{n}{2} (2 \times 10 + (n-1) \times -0.8)$,

 $64 = \frac{n}{2} (10 + 10 + (n - 1) \times -0.8) \text{ or versions using pence rather than } \pounds \text{'s} \quad 6400 = \frac{n}{2} (2000 + (n - 1) \times -80)$

Allow recovery for both marks following $64 = \frac{n}{2} (2 \times 10 + (n-1) - 0.8)$ with an invisible ×

A1*: Proceeds without error to the given answer. (Do not penalise a missing final trailing bracket)Look for at least a line with the brackets correctly removed as well as a line with the terms in n correctly combined

E.g.
$$64 = \frac{n}{2} (20 + (n-1) \times -0.8) \Longrightarrow 64 = 10n - 0.4n^2 + 0.4n \Longrightarrow 0.4n^2 - 10.4n + 64 = 0 \Longrightarrow n^2 - 26n + 160 = 0$$

(ii)(b)

(II)(U)

B1: *n* = 10,16

(ii)(c)

B1: Chooses 10 (weeks) and gives a minimal acceptable reason. The reason must focus on why the answer is 10 (weeks) rather than 16(weeks) or alternatively why it would not be 16 weeks.