Question	Scheme	Marks	AOs
15 (a)	Sets up an allowable equation using volume = 240 E.g. $\frac{1}{2}r^2 \times 0.8h = 240 \Rightarrow h = \frac{600}{r^2}$ o.e.	M1 A1	3.4 1.1b
	Attempts to substitute their $h = \frac{600}{r^2}$ into $(S =)\frac{1}{2}r^2 \times 0.8 + \frac{1}{2}r^2 \times 0.8 + 2rh + 0.8rh$	dM1	3.4
	$S = 0.8r^{2} + 2.8rh = 0.8r^{2} + 2.8 \times \frac{600}{r} = 0.8r^{2} + \frac{1680}{r} *$	A1*	2.1
		(4)	
(b)	$\left(\frac{\mathrm{d}S}{\mathrm{d}r}\right) = 1.6r - \frac{1680}{r^2}$ Sets $\frac{\mathrm{d}S}{\mathrm{d}r} = 0 \Longrightarrow r^3 = 1050$	M1 A1	3.1a 1.1b
	Sets $\frac{dS}{dr} = 0 \Rightarrow r^3 = 1050$ r = awrt 10.2	dM1 A1	2.1 1.1b
		(4)	
(c)	Attempts to substitute their positive r into $\left(\frac{d^2S}{dr^2}\right) = 1.6 + \frac{3360}{r^3}$	M1	1.1b
	and considers its value or sign E.g. Correct $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3}$ with $\frac{d^2S}{dr^2} = 5 > 0$ proving a	A1	1.1b
	minimum value of <i>S</i>	(2)	
	(10 m		
Notes:			

Volume = $0.4r^2h$

Total surface area = $2rh+0.8r^2+0.8rh$

M1: Attempts to use the fact that the volume of the toy is 240 cm^3

Sight of $\frac{1}{2}r^2 \times 0.8 \times h = 240$ leading to $h = \dots$ or $rh = \dots$ scores this mark

But condone an equation of the correct form so allow for $kr^2h = 240 \Rightarrow h = ...$ or rh = ...

A1: A correct expression for $h = \frac{600}{r^2}$ or $rh = \frac{600}{r}$ which may be left unsimplified.

This may be implied when you see an expression for S or part of S E.g $2rh = 2r \times \frac{600}{r^2}$

dM1: Attempts to substitute their $h = \frac{a}{r^2}$ o.e. such as $hr = \frac{a}{r}$ into a **correct** expression for *S*

Sight of $\frac{1}{2}r^2 \times 0.8 + \frac{1}{2}r^2 \times 0.8 + rh + rh + 0.8rh$ with an appropriate substitution

Simplified versions such as $0.8r^2 + 2rh + 0.8rh$ used with an appropriate substitution is fine. A1*: Correct work leading to the given result.

S =, SA = or surface area = must be seen at least once in the correct place The method must be made clear so expect to see evidence. For example

$$S = 0.8r^{2} + 2rh + 0.8rh \Longrightarrow S = 0.8r^{2} + 2r \times \frac{600}{r^{2}} + 0.8r \times \frac{600}{r^{2}} \Longrightarrow S = 0.8r^{2} + \frac{1680}{r} \text{ would be fine.}$$

- (b) There is no requirement to see $\frac{dS}{dr}$ in part (b). It may even be called $\frac{dy}{dx}$.
- M1: Achieves a derivative of the form $pr \pm \frac{q}{r^2}$ where p and q are non-zero constants
- **A1:** Achieves $\left(\frac{\mathrm{d}S}{\mathrm{d}r}\right) = 1.6r \frac{1680}{r^2}$

dM1: Sets or implies that their $\frac{dS}{dr} = 0$ and proceeds to $mr^3 = n$, $m \times n > 0$. It is dependent upon a correct attempt at differentiation. This mark may be implied by a correct answer to their $pr - \frac{q}{r^2} = 0$

A1:
$$r = \text{awrt } 10.2 \text{ or } \sqrt[3]{1050}$$

(c)

M1: Attempts to substitute their positive r (found in (b)) into $\left(\frac{d^2S}{dr^2}\right)e\pm\frac{f}{r^3}$ where e and f are non zero and finds its value or sign.

Alternatively considers the sign of $\left(\frac{d^2S}{dr^2}\right)e \pm \frac{f}{r^3}$ (at their positive *r* found in (b)) Condone the $\frac{d^2S}{dr^2}$ to be $\frac{d^2y}{dx^2}$ or being absent, but only for this mark. **A1:** States that $\frac{d^2S}{dr^2}$ or $S'' = 1.6 + \frac{3360}{r^3} = awrt 5 > 0$ proving a minimum value of *S* This is dependent upon having achieved r = awrt 10 and a correct $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3}$ It can be argued without finding the value of $\frac{d^2S}{dr^2}$. E.g. $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3} > 0$ as r > 0, so minimum value of *S*. For consistency it is also dependent upon having achieved r = awrt 10