Question	Scheme	Marks	AOs
15 (a)	Sets up an allowable equation using volume $=240$ E.g. $\frac{1}{2} r^{2} \times 0.8 h=240 \Rightarrow h=\frac{600}{r^{2}}$ o.e.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 3.4 \\ 1.1 \mathrm{~b} \end{gathered}$
	Attempts to substitute their $h=\frac{600}{r^{2}}$ into $(S=) \frac{1}{2} r^{2} \times 0.8+\frac{1}{2} r^{2} \times 0.8+2 r h+0.8 r h$	dM1	3.4
	$S=0.8 r^{2}+2.8 r h=0.8 r^{2}+2.8 \times \frac{600}{r}=0.8 r^{2}+\frac{1680}{r} *$	A1*	2.1
		(4)	
(b)	$\left(\frac{\mathrm{d} S}{\mathrm{~d} r}\right)=1.6 r-\frac{1680}{r^{2}}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\begin{aligned} & \text { Sets } \frac{\mathrm{d} S}{\mathrm{~d} r}=0 \Rightarrow r^{3}=1050 \\ & \quad r=\mathrm{awrt} 10.2 \end{aligned}$	$\begin{gathered} \mathrm{dM} 1 \\ \mathrm{~A} 1 \end{gathered}$	$\begin{gathered} 2.1 \\ 1.1 \mathrm{~b} \end{gathered}$
		(4)	
(c)	Attempts to substitute their positive r into $\left(\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}\right)=1.6+\frac{3360}{r^{3}}$ and considers its value or sign	M1	1.1b
	E.g. Correct $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=1.6+\frac{3360}{r^{3}}$ with $\frac{\mathrm{d}^{2} S}{\mathrm{dr}^{2}{ }_{r=102}}=5>0$ proving a minimum value of S	A1	1.1b
		(2)	
(10 marks)			

Notes:

Total surface area $=2 r h+0.8 r^{2}+0.8 r h$

M1: Attempts to use the fact that the volume of the toy is $240 \mathrm{~cm}^{3}$
Sight of $\frac{1}{2} r^{2} \times 0.8 \times h=240$ leading to $h=\ldots$ or $r h=\ldots$ scores this mark
But condone an equation of the correct form so allow for $k r^{2} h=240 \Rightarrow h=\ldots$ or $r h=\ldots$
A1: A correct expression for $h=\frac{600}{r^{2}}$ or $r h=\frac{600}{r}$ which may be left unsimplified.
This may be implied when you see an expression for S or part of $S \quad$ E.g $2 r h=2 r \times \frac{600}{r^{2}}$
dM1: Attempts to substitute their $h=\frac{a}{r^{2}}$ o.e. such as $h r=\frac{a}{r}$ into a correct expression for S
Sight of $\frac{1}{2} r^{2} \times 0.8+\frac{1}{2} r^{2} \times 0.8+r h+r h+0.8 r h$ with an appropriate substitution
Simplified versions such as $0.8 r^{2}+2 r h+0.8 r h$ used with an appropriate substitution is fine.
A1*: Correct work leading to the given result.
$S=, S A=$ or surface area = must be seen at least once in the correct place
The method must be made clear so expect to see evidence. For example
$S=0.8 r^{2}+2 r h+0.8 r h \Rightarrow S=0.8 r^{2}+2 r \times \frac{600}{r^{2}}+0.8 r \times \frac{600}{r^{2}} \Rightarrow S=0.8 r^{2}+\frac{1680}{r}$ would be fine.
(b) There is no requirement to see $\frac{\mathrm{d} S}{\mathrm{~d} r}$ in part (b). It may even be called $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

M1: Achieves a derivative of the form $p r \pm \frac{q}{r^{2}}$ where p and q are non- zero constants
A1: Achieves $\left(\frac{\mathrm{d} S}{\mathrm{~d} r}\right)=1.6 r-\frac{1680}{r^{2}}$
dM1: Sets or implies that their $\frac{\mathrm{d} S}{\mathrm{~d} r}=0$ and proceeds to $m r^{3}=n, \quad m \times n>0$. It is dependent upon a correct attempt at differentiation. This mark may be implied by a correct answer to their $\mathrm{pr}-\frac{\mathrm{q}}{r^{2}}=0$
A1: $r=$ awrt 10.2 or $\sqrt[3]{1050}$
(c)

M1: Attempts to substitute their positive r (found in (b)) into $\left(\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=\right) e \pm \frac{f}{r^{3}}$ where e and f are non zero and finds its value or sign.
Alternatively considers the sign of $\left(\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=\right) e \pm \frac{f}{r^{3}}$ (at their positive r found in (b))
Condone the $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}$ to be $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ or being absent, but only for this mark.
A1: States that $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}$ or $S^{\prime \prime}=1.6+\frac{3360}{r^{3}}=$ awrt $5>0$ proving a minimum value of S
This is dependent upon having achieved $r=$ awrt 10 and a correct $\frac{\mathrm{d}^{2} S}{\mathrm{dr} r^{2}}=1.6+\frac{3360}{r^{3}}$
It can be argued without finding the value of $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}$. E.g. $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=1.6+\frac{3360}{r^{3}}>0$ as $r>0$, so minimum value of S. For consistency it is also dependent upon having achieved $r=$ awrt 10 Do NOT allow $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for this mark

