(b)
$$y = |f(x)|$$

(c) $y = 3f(x-2)+2$

(2)

(a) $f(x) + a$ is translation a units up parallel to y-axis, so

$$(-2, -5) \longrightarrow (-2, -5+2) = (-2, -3) \text{ (1 mark)}$$

(b) $|f(x)|$ reflects all negative y values in the x-axis, so

$$(-2, -5) \longrightarrow (-2, |-5|) = (-2, 5) \text{ (1 mark)}$$

(c) $f(x-2)$ maps $(-2, -5)$ to $(-2+2, -5) = (0, -5)$ (1 mark)

3f(x-2) maps (-2,-5) to (0, -5 x3) = (0,-15)

3f(x-2)+2 maps(-2,-5) to (0,-15+2) = (0,-13)

(1)

1. The point P(-2, -5) lies on the curve with equation y = f(x), $x \in \mathbb{R}$

is transformed to the curve with equation

(a) y = f(x) + 2

Find the point to which P is mapped, when the curve with equation y = f(x)