Question	Scheme	Marks	AOs
13(a)	$\frac{1}{x(100-x)} \equiv \frac{P}{x} + \frac{Q}{100-x} \Longrightarrow P = \dots, Q = \dots$	M1	1.1b
	$\frac{1}{x(100-x)} = \frac{1}{100x} + \frac{1}{100(100-x)}$	A1	1.1b
		(2)	
(b)	$500\frac{dx}{dt} = x(100 - x) \Rightarrow \int \frac{500}{x(100 - x)} dx = \int dt \text{ or } \int \frac{1}{x(100 - x)} dx = \int \frac{1}{500} dt$ $\Rightarrow 5 \int \left(\frac{1}{x} + \frac{1}{100 - x}\right) dx = \int dt \text{ or e.g. } \int \left(\frac{1}{x} + \frac{1}{100 - x}\right) dx = \int \frac{1}{5} dt$	M1	2.1
	$5\ln x - 5\ln(100 - x) = t + c$	M1 A1ft	3.1a 1.1b
	$x = 5, t = 0 \Longrightarrow 5 \ln \frac{1}{19} = c$	M1	3.4
	$5\ln x - 5\ln(100 - x) = t + 5\ln\frac{1}{19} \Longrightarrow 5\ln\frac{x}{100 - x} = t + 5\ln\frac{1}{19}$ $\Longrightarrow \ln\frac{x}{100 - x} = \frac{t}{5} + \ln\frac{1}{19} \Longrightarrow \frac{x}{100 - x} = \frac{1}{19}e^{\frac{t}{5}} \Longrightarrow x = \dots$	M1	2.1
	$x = \frac{100}{1 + 19e^{\frac{1}{5}t}}$	A1	1.1b
		(6)	
(c)	$x = \frac{100}{1 + 19e^{-\frac{1}{5} \times 10}} = \dots$	M1	3.4
	$x = 28 (m^2)$	A1	1.1b
		(2)	
(10 ma			marks)
Notes			

(a)

M1: Correct method of partial fractions to find values for P and Q. May be implied by correct values or correct fractions.

A1: Correct partial fractions

(b)

M1: Separates the variables and uses the result from part (a)

M1: Correct attempt at the integration.

Look for $\alpha \ln x + \beta \ln(100 - x) = t$ or equivalent

A1ft: Correct integration for their PFs of the form $\frac{A}{x} + \frac{B}{100-x}$ (condone omission of + c)

M1: Uses the conditions in the model of x = 5, t = 0 to find their constant of integration

M1: Uses correct processing to make *x* the subject to reach an expression of the required form A1: Correct expression

(c)

M1: Uses their equation with t = 10 to find a value for x

A1: x = 28.00045... awrt 28