Questi	on Scheme	Marks	AOs	
1	$x^{\frac{1}{2}}(2x-5) = \dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}} \text{ or } \frac{x^{\frac{1}{2}}(2x-5)}{3} = \frac{\dots x^{\frac{3}{2}} + \dots x^{\frac{1}{2}}}{3}$	M1	1.1b	
	$\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3}$	A1	1.1b	
	$\int \frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3} dx = \dots x^{\frac{5}{2}} \pm \dots x^{\frac{3}{2}} \ (+c)$	dM1	1.1b	
	$\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$	A1	1.1b	
		(4)		
(4 marks)				
Notes				
M1:	Attempts to multiply out the brackets of the numerator and either writes the expression (or just the			
A1:	numerator) as a sum of terms with indices . Award for either one correct index of $x^{\frac{1}{2}} +x^{\frac{1}{2}}$ which omes from a correct method. Condone appearing as terms on separate lines for this mark. The orrect index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ after they have integrated. The $\frac{1}{3}$ does not need to be considered for this mark. $\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3}$ or equivalent e.g. $\frac{1}{3}\left(2x^{\frac{3}{2}} - 5x^{\frac{1}{2}}\right)$. Condone $\frac{2x^{\frac{3}{2}} - 5x^{\frac{1}{2}}}{3}$ May be implied by further work. The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^3 \rightarrow x^{\frac{5}{2}}$ after they have integrated. gnore incorrect integration notation around the terms. Ignore any presence or absence of dx.			
Be aware that a factor of $\frac{1}{3}$ may be taken outside of the integral so you may need to l			d to look at	
	further work to award the first A mark if work on the two terms is done separately or in a list. May be unsimplified and the two terms may appear in a list which is fine. Coefficients must be exact.			
dM1:	increases the power by one on an x^n term where <i>n</i> is a fraction. The index does not need to be processed. .g. $x^{\frac{3}{2}+1}$ or $x^{\frac{1}{2}+1}$ It is dependent on the previous method mark so at least one of the terms must			
	e.g. x^2 or x^2 It is dependent on the previous method mark so at least have had a correct index.	one of th	ie terms must	
	a confect index.	5 3	3	

Note that integrating the numerator and denominator e.g.

$$\frac{2x^{\frac{3}{2}}}{3} - \frac{5x^{\frac{1}{2}}}{3} \to \frac{...x^{\frac{5}{2}}}{3x} - \frac{...x^{\frac{3}{2}}}{3x}$$
 is dM0.

A1: $\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{9}x^{\frac{3}{2}} + c$ and including the constant or simplified exact equivalent such as $\frac{4}{15}\sqrt{x^5} - \frac{10}{9}\sqrt{x^3} + c \text{ or } \frac{4}{15}x^{2.5} - \frac{10}{9}x^{1.5} + c \text{ or } \frac{1}{45}\left(12x^{\frac{5}{2}} - 50x^{\frac{3}{2}}\right) + c \text{ or } \frac{x^{\frac{7}{2}}}{45}(12x - 50) + c.$ Fractions must be in their lowest terms and indices processed Do not accept e.g. $0.267x^{\frac{5}{2}} - 1.11x^{\frac{3}{2}} + c$ but allow $0.2\dot{6}x^{\frac{5}{2}} - 1.\dot{1}x^{\frac{3}{2}} + c$ Isw once a correct answer is seen but withhold this mark if there is spurious notation around their final answer e.g. $\int \frac{4}{15} x^{\frac{5}{2}} - \frac{10}{9} x^{\frac{3}{2}} + c \, dx$ is M1A1dM1A0 Alternative method using integration by parts example e.g. $\int x^{\frac{1}{2}} (2x-5) dx = \dots x^{\frac{3}{2}} (2x-5) - \int \dots x^{\frac{3}{2}} dx$ (applies integration by parts correctly to typically M1: achieve this form – the (2x-5) may also be split up as well – send to review if unsure how to mark) This may also be done the other way round e.g. $\int x^{\frac{1}{2}} (2x-5) dx = ...x^{\frac{1}{2}} (x^2-5x) - \int ...x^{\frac{3}{2}} \pm ...x^{\frac{1}{2}} dx$ The $\frac{1}{3}$ does not need to be considered for this mark. A correct intermediate stage applying integration by parts with correct coefficients. A1: e.g. $\left| \frac{x^2(2x-5)}{3} dx = \frac{2}{3} x^{\frac{3}{2}} \left(\frac{2x-5}{3} \right) - \int \frac{4}{9} x^{\frac{3}{2}} dx$ (or unsimplified equivalent). Coefficients must be exact. (See main scheme notes above) The other way round this could appear as e.g. $\left(\frac{x^{\frac{1}{2}}(2x-5)}{3}dx = \frac{1}{3}x^{\frac{1}{2}}(x^{2}-5x) - \frac{1}{6}\int x^{\frac{3}{2}} - 5x^{\frac{1}{2}}dx$. Condone a missing dx. May be implied. Increases the power by one on an x^n term where *n* is a fraction e.g. $\int \dots x^{\frac{3}{2}} dx \to \dots x^{\frac{5}{2}}$ The index dM1: does not need to be processed. It is dependent on the previous method mark. $\frac{4}{15}x^{\frac{5}{2}} - \frac{10}{\alpha}x^{\frac{5}{2}} + c$ or exact simplified equivalent. (See main scheme notes above) A1: Alternative method using the substitution method e.g. let $u = x^{\frac{1}{2}} \Rightarrow \int ...u^4 + ...u^2 du$ (uses a substitution to express the integral in terms of another M1: variable. Allow slips with the coefficients, but the indices should be correct for their substitution) The $\frac{1}{2}$ does not need to be considered for this mark. e.g. $\int \frac{4u^4}{3} - \frac{10u^2}{3} du$ or unsimplified equivalent. Coefficients must be exact. See main scheme A1: notes above). May be implied by further work. Condone a missing dx. $\int ...u^4 + ...u^2 du \rightarrow ...u^5 + ...u^3$ (increases the power by one on at least one of their indices – does not dM1: need to be processed. It is dependent on the previous method mark. $\frac{4}{15}x^{\frac{2}{2}} - \frac{10}{9}x^{\frac{2}{2}} + c$ or exact simplified equivalent. (See main scheme notes above) A1: There may be alternative substitutions, but the same marking principles apply.