Marks
AOs

$x^{\frac{1}{2}}(2 x-5)=\ldots x^{\frac{3}{2}}+\ldots x^{\frac{1}{2}}$ or $\frac{x^{\frac{1}{2}}(2 x-5)}{3}=\frac{\ldots x^{\frac{3}{2}}+\ldots x^{\frac{1}{2}}}{3}$	M 1	1.1 b
$\frac{2 x^{\frac{3}{2}}}{3}-\frac{5 x^{\frac{1}{2}}}{3}$	A 1	1.1 b
$\int \frac{2 x^{\frac{3}{2}}}{3}-\frac{5 x^{\frac{1}{2}}}{3} \mathrm{~d} x=\ldots x^{\frac{5}{2}} \pm \ldots x^{\frac{3}{2}}(+c)$	dM 1	1.1 b
$\frac{4}{15} x^{\frac{5}{2}}-\frac{10}{9} x^{\frac{3}{2}}+c$	A 1	1.1 b

(4 marks)

Notes

M1: Attempts to multiply out the brackets of the numerator and either writes the expression (or just the numerator) as a sum of terms with indices. Award for either one correct index of $\ldots x^{\frac{3}{2}}+\ldots x^{\frac{1}{2}}$ which comes from a correct method. Condone appearing as terms on separate lines for this mark. The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^{3} \rightarrow x^{\frac{5}{2}}$ after they have integrated. The $\frac{1}{3}$ does not need to be considered for this mark.
A1: $\frac{2 x^{\frac{3}{2}}}{3}-\frac{5 x^{\frac{1}{2}}}{3}$ or equivalent e.g. $\frac{1}{3}\left(2 x^{\frac{3}{2}}-5 x^{\frac{1}{2}}\right)$. Condone $\frac{2 x^{\frac{3}{2}}-5 x^{\frac{1}{2}}}{3}$ May be implied by further work.
The correct index may be implied later when e.g. $\sqrt{x} \rightarrow x^{\frac{3}{2}}$ or $(\sqrt{x})^{3} \rightarrow x^{\frac{5}{2}}$ after they have integrated.
Ignore incorrect integration notation around the terms. Ignore any presence or absence of $\mathrm{d} x$.
Be aware that a factor of $\frac{1}{3}$ may be taken outside of the integral so you may need to look at further work to award the first A mark if work on the two terms is done separately or in a list. May be unsimplified and the two terms may appear in a list which is fine. Coefficients must be exact.
dM1: Increases the power by one on an x^{n} term where n is a fraction. The index does not need to be processed.
e.g. ... $x^{\frac{3}{2}+1}$ or ... $x^{\frac{1}{2}+1}$ It is dependent on the previous method mark so at least one of the terms must have had a correct index.
Note that integrating the numerator and denominator e.g. $\frac{2 x^{\frac{3}{2}}}{3}-\frac{5 x^{\frac{1}{2}}}{3} \rightarrow \frac{\ldots x^{\frac{5}{2}}}{3 x}-\frac{\ldots x^{\frac{3}{2}}}{3 x}$ is dM0.

A1: $\quad \frac{4}{15} x^{\frac{5}{2}}-\frac{10}{9} x^{\frac{3}{2}}+c$ and including the constant or simplified exact equivalent such as
$\frac{4}{15} \sqrt{x^{5}}-\frac{10}{9} \sqrt{x^{3}}+c$ or $\frac{4}{15} x^{2.5}-\frac{10}{9} x^{1.5}+c$ or $\frac{1}{45}\left(12 x^{\frac{5}{2}}-50 x^{\frac{3}{2}}\right)+c$ or $\frac{x^{\frac{3}{2}}}{45}(12 x-50)+c$. Fractions
must be in their lowest terms and indices processed.
Do not accept e.g. $0.267 x^{\frac{5}{2}}-1.11 x^{\frac{3}{2}}+c$ but allow $0.2 \dot{6} x^{\frac{5}{2}}-1 . \dot{1} x^{\frac{3}{2}}+c$
Isw once a correct answer is seen but withhold this mark if there is spurious notation around their final answer e.g. $\int \frac{4}{15} x^{\frac{5}{2}}-\frac{10}{9} x^{\frac{3}{2}}+c \mathrm{~d} x$ is M1A1dM1A0

Alternative method using integration by parts example

M1: e.g. $\int x^{\frac{1}{2}}(2 x-5) \mathrm{d} x=\ldots x^{\frac{3}{2}}(2 x-5)-\int \ldots x^{\frac{3}{2}} \mathrm{~d} x \quad$ (applies integration by parts correctly to typically achieve this form - the $(2 x-5)$ may also be split up as well - send to review if unsure how to mark) This may also be done the other way round e.g. $\int x^{\frac{1}{2}}(2 x-5) \mathrm{d} x=\ldots x^{\frac{1}{2}}\left(x^{2}-5 x\right)-\int \ldots x^{\frac{3}{2}} \pm \ldots x^{\frac{1}{2}} \mathrm{~d} x$ The $\frac{1}{3}$ does not need to be considered for this mark.
A1: A correct intermediate stage applying integration by parts with correct coefficients.
e.g. $\int \frac{x^{\frac{1}{2}}(2 x-5)}{3} \mathrm{~d} x=\frac{2}{3} x^{\frac{3}{2}}\left(\frac{2 x-5}{3}\right)-\int \frac{4}{9} x^{\frac{3}{2}} \mathrm{~d} x \quad$ (or unsimplified equivalent).

Coefficients must be exact. (See main scheme notes above) The other way round this could appear as
e.g. $\int \frac{x^{\frac{1}{2}}(2 x-5)}{3} \mathrm{~d} x=\frac{1}{3} x^{\frac{1}{2}}\left(x^{2}-5 x\right)-\frac{1}{6} \int x^{\frac{3}{2}}-5 x^{\frac{1}{2}} \mathrm{~d} x$. Condone a missing $\mathrm{d} x$. May be implied.
dM 1 : Increases the power by one on an x^{n} term where n is a fraction e.g. $\int \ldots x^{\frac{3}{2}} \mathrm{~d} x \rightarrow \ldots x^{\frac{5}{2}}$ The index does not need to be processed. It is dependent on the previous method mark.
A1: $\frac{4}{15} x^{\frac{5}{2}}-\frac{10}{9} x^{\frac{3}{2}}+c$ or exact simplified equivalent. (See main scheme notes above)

Alternative method using the substitution method

M1: e.g. let $u=x^{\frac{1}{2}} \Rightarrow \int \ldots u^{4}+\ldots u^{2} \mathrm{~d} u$ (uses a substitution to express the integral in terms of another variable. Allow slips with the coefficients, but the indices should be correct for their substitution) The $\frac{1}{3}$ does not need to be considered for this mark.
A1: e.g. $\int \frac{4 u^{4}}{3}-\frac{10 u^{2}}{3} \mathrm{~d} u$ or unsimplified equivalent. Coefficients must be exact. See main scheme notes above). May be implied by further work. Condone a missing $\mathrm{d} x$.
$\mathrm{dM} 1: \int \ldots u^{4}+\ldots u^{2} \mathrm{~d} u \rightarrow \ldots u^{5}+\ldots u^{3}$ (increases the power by one on at least one of their indices - does not need to be processed. It is dependent on the previous method mark.
A1: $\frac{4}{15} x^{\frac{5}{2}}-\frac{10}{9} x^{\frac{3}{2}}+c$ or exact simplified equivalent. (See main scheme notes above)
There may be alternative substitutions, but the same marking principles apply.

